LACL
实现量子化学精度,同时规避几何弛豫瓶颈,深度对比学习用于分子性质有效预测
编辑 | 紫罗数据驱动的深度学习算法可以准确预测高级量子化学分子特性。然而,它们的输入必须限制在与训练数据集相同的量子化学几何弛豫水平,从而限制了它们的灵活性。采用替代的经济有效的构象生成方法会引入域偏移(domain-shift)问题,从而降低预测精度。近日,来自韩国首尔大学的研究人员提出了一种基于深度对比学习的域适应(domain-adaptation)方法,称为局部原子环境对比学习(Local Atomic environment Contrastive Learning,LACL)。LACL 通过比较不同的
12/14/2023 1:54:00 PM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
AI新词
图像
Gemini
智能体
马斯克
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
苹果
蛋白质
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
人形机器人
生成
AI视频
百度
工具
计算
Sora
GPU
华为
大语言模型
RAG
具身智能
AI设计
字节跳动
搜索
大型语言模型
场景
AGI
深度学习
视频生成
预测
视觉
伟达
架构
Transformer
编程
神器推荐
DeepMind
亚马逊
特斯拉
AI模型