如何防止我的模型过拟合?这篇文章给出了6大必备方法

正如巴菲特所言:「近似的正确好过精确的错误。」

在机器学习中,过拟合(overfitting)会使模型的预测性能变差,通常发生在模型过于复杂的情况下,如参数过多等。本文对过拟合及其解决方法进行了归纳阐述。

如何防止我的模型过拟合?这篇文章给出了6大必备方法

在机器学习中,如果模型过于专注于特定的训练数据而错过了要点,那么该模型就被认为是过拟合。该模型提供的答案和正确答案相距甚远,即准确率降低。这类模型将无关数据中的噪声视为信号,对准确率造成负面影响。即使模型经过很好地训练使损失很小,也无济于事,它在新数据上的性能仍然很差。欠拟合是指模型未捕获数据的逻辑。因此,欠拟合模型具备较低的准确率和较高的损失。

如何防止我的模型过拟合?这篇文章给出了6大必备方法

如何确定模型是否过拟合?

构建模型时,数据会被分为 3 类:训练集、验证集和测试集。训练数据用来训练模型;验证集用于在每一步测试构建的模型;测试集用于最后评估模型。通常数据以 80:10:10 或 70:20:10 的比率分配。

在构建模型的过程中,在每个 epoch 中使用验证数据测试当前已构建的模型,得到模型的损失和准确率,以及每个 epoch 的验证损失和验证准确率。模型构建完成后,使用测试数据对模型进行测试并得到准确率。如果准确率和验证准确率存在较大的差异,则说明该模型是过拟合的。

如果验证集和测试集的损失都很高,那么就说明该模型是欠拟合的。

如何防止过拟合

交叉验证

交叉验证是防止过拟合的好方法。在交叉验证中,我们生成多个训练测试划分(splits)并调整模型。K-折验证是一种标准的交叉验证方法,即将数据分成 k 个子集,用其中一个子集进行验证,其他子集用于训练算法。

交叉验证允许调整超参数,性能是所有值的平均值。该方法计算成本较高,但不会浪费太多数据。交叉验证过程参见下图:

如何防止我的模型过拟合?这篇文章给出了6大必备方法

用更多数据进行训练

用更多相关数据训练模型有助于更好地识别信号,避免将噪声作为信号。数据增强是增加训练数据的一种方式,可以通过翻转(flipping)、平移(translation)、旋转(rotation)、缩放(scaling)、更改亮度(changing brightness)等方法来实现。

移除特征

移除特征能够降低模型的复杂性,并且在一定程度上避免噪声,使模型更高效。为了降低复杂度,我们可以移除层或减少神经元数量,使网络变小。

早停

对模型进行迭代训练时,我们可以度量每次迭代的性能。当验证损失开始增加时,我们应该停止训练模型,这样就能阻止过拟合。

下图展示了停止训练模型的时机:

如何防止我的模型过拟合?这篇文章给出了6大必备方法

正则化

正则化可用于降低模型的复杂性。这是通过惩罚损失函数完成的,可通过 L1 和 L2 两种方式完成,数学方程式如下:

如何防止我的模型过拟合?这篇文章给出了6大必备方法

L1 惩罚的目的是优化权重绝对值的总和。它生成一个简单且可解释的模型,且对于异常值是鲁棒的。

如何防止我的模型过拟合?这篇文章给出了6大必备方法

L2 惩罚权重值的平方和。该模型能够学习复杂的数据模式,但对于异常值不具备鲁棒性。

这两种正则化方法都有助于解决过拟合问题,读者可以根据需要选择使用。

Dropout

Dropout 是一种正则化方法,用于随机禁用神经网络单元。它可以在任何隐藏层或输入层上实现,但不能在输出层上实现。该方法可以免除对其他神经元的依赖,进而使网络学习独立的相关性。该方法能够降低网络的密度,如下图所示:

如何防止我的模型过拟合?这篇文章给出了6大必备方法

总结

过拟合是一个需要解决的问题,因为它会让我们无法有效地使用现有数据。有时我们也可以在构建模型之前,预估到会出现过拟合的情况。通过查看数据、收集数据的方式、采样方式,错误的假设,错误表征能够发现过拟合的预兆。为避免这种情况,请在建模之前先检查数据。但有时在预处理过程中无法检测到过拟合,而是在构建模型后才能检测出来。我们可以使用上述方法解决过拟合问题。

原文链接:https://mahithas.medium.com/overfitting-identify-and-resolve-df3e3fdd2860

相关资讯

百分点数据科学实验室:产品生命周期管理创新应用落地实践

编者按产品生命周期管理在数字经济发展过程中是必不可少的,在零售快消行业可用来指导产品的以销定采和精准投放,在IT行业可辅助软件应用等产品的开发进程管理,同时还也会对环境管理产生影响,对建筑业在节能减排、减轻环境污染层面起到辅助作用。因此,及时把控产品生命周期进程,用数据智能技术赋能管理至关重要。百分点数据科学实验室基于产品生命周期理论在多个行业的落地实践,总结了如何准确把握产品生命周期的四个阶段及识别方法论。众所周知,一种产品在市场上的销售情况和获利能力并非是一成不变的,因此,任何一家企业的产品不可能永远畅销,但企

Meta FAIR 和 Samaya AI 团队利用 AI 提高维基百科的可验证性

编辑 | 白菜叶可验证性是维基百科的核心内容政策:声明需要有引用的支持。维护和提高维基百科参考文献的质量是一项重要的挑战,迫切需要更好的工具来帮助人类完成这项工作。在这里,Samaya AI 和 Meta FAIR 的研究人员表明,可以借助由信息检索系统和语言模型提供支持的人工智能 (AI) 来解决改进参考的过程。这种基于神经网络的系统(这里称之为 SIDE)可以识别不太可能支持其主张的维基百科引文,然后从网络上推荐更好的引文。该团队在现有的维基百科参考资料上训练这个模型,因此从数千名维基百科编辑的贡献和综合智慧中

谷歌 DeepMind 展示 GenRM 技术:微调 LLMs 作为奖励模型,提升生成式 AI 推理能力

谷歌 DeepMind 团队于 8 月 27 日在 arxiv 上发表论文,介绍展示了 GenRM 生成式验证器,创造性提出奖励模型,从而提升生成式 AI 推理能力。AI 行业内,目前提高大语言模型(LLMs)的主流做法就是 Best-of-N 模式,即由 LLM 生成的 N 个候选解决方案由验证器进行排序,并选出最佳方案。这种基于 LLM 的验证器通常被训练成判别分类器来为解决方案打分,但它们无法利用预训练 LLMs 的文本生成能力。DeepMind 团队为了克服这个局限性,尝试使用下一个 token 预测目标来