谷歌 DeepMind 展示 GenRM 技术:微调 LLMs 作为奖励模型,提升生成式 AI 推理能力

谷歌 DeepMind 团队于 8 月 27 日在 arxiv 上发表论文,介绍展示了 GenRM 生成式验证器,创造性提出奖励模型,从而提升生成式 AI 推理能力。AI 行业内,目前提高大语言模型(LLMs)的主流做法就是 Best-of-N 模式,即由 LLM 生成的 N 个候选解决方案由验证器进行排序,并选出最佳方案。这种基于 LLM 的验证器通常被训练成判别分类器来为解决方案打分,但它们无法利用预训练 LLMs 的文本生成能力。DeepMind 团队为了克服这个局限性,尝试使用下一个 token 预测目标来

谷歌 DeepMind 团队于 8 月 27 日在 arxiv 上发表论文,介绍展示了 GenRM 生成式验证器,创造性提出奖励模型,从而提升生成式 AI 推理能力。

AI 行业内,目前提高大语言模型(LLMs)的主流做法就是 Best-of-N 模式,即由 LLM 生成的 N 个候选解决方案由验证器进行排序,并选出最佳方案。

这种基于 LLM 的验证器通常被训练成判别分类器来为解决方案打分,但它们无法利用预训练 LLMs 的文本生成能力。

DeepMind 团队为了克服这个局限性,尝试使用下一个 token 预测目标来训练验证器,同时进行验证和解决方案生成。

谷歌 DeepMind 展示 GenRM 技术:微调 LLMs 作为奖励模型,提升生成式 AI 推理能力

DeepMind 团队这种生成式验证器(GenRM),相比较传统验证器,主要包含以下优点:

无缝集成指令调整

支持思维链推理

通过多数投票利用额外的推理时间计算

在算法和小学数学推理任务中使用基于 Gemma 的验证器时,GenRM 的性能优于判别式验证器和 LLM-as-a-Judge 验证器,在使用 Best-of-N 解决问题的百分比上提高了 16-64%

谷歌 DeepMind 展示 GenRM 技术:微调 LLMs 作为奖励模型,提升生成式 AI 推理能力

谷歌 DeepMind 展示 GenRM 技术:微调 LLMs 作为奖励模型,提升生成式 AI 推理能力

据 Google DeepMind 报道,GenRM 相对于分类奖励模型的边标志着人工智能奖励系统的关键演化,特别是在其容量方面,以防止新模型学成到的欺诈行为。这一进步突出表明,迫切需要完善奖励模型,使人工智能输出与社会责任标准保持一致。

AI在线附上参考地址

Google DeepMind Researchers Propose GenRM: Training Verifiers with Next-Token Prediction to Leverage the Text Generation Capabilities of LLMs

Generative Verifiers: Reward Modeling as Next-Token Prediction

相关资讯

AI“攻克”CAPTCHA 网站验证系统

互联网时代,网站如何判断访问者是人类用户还是机器人?其中一个被广泛部署的解决方案,就是 CAPTCHA 验证系统。不过在迈入 AI 时代后,CAPTCHA 验证系统的识别和防御能力被大打折扣。用户在访问某些网站时,可能就会遇到 CAPTCHA 验证系统,要求用户从 9 张图片中,筛选汽车、自行车、桥梁或红绿灯等,来证明是人类访问者。根据苏黎世联邦理工学院(ETH Zurich)的最新研究,AI 现在可以成功击败这些谜题。这款人工智能解谜软件建立在一个被广泛使用的人工智能图片处理模型之上,该模型被称为“You Onl

如何防止我的模型过拟合?这篇文章给出了6大必备方法

正如巴菲特所言:「近似的正确好过精确的错误。」

Meta FAIR 和 Samaya AI 团队利用 AI 提高维基百科的可验证性

编辑 | 白菜叶可验证性是维基百科的核心内容政策:声明需要有引用的支持。维护和提高维基百科参考文献的质量是一项重要的挑战,迫切需要更好的工具来帮助人类完成这项工作。在这里,Samaya AI 和 Meta FAIR 的研究人员表明,可以借助由信息检索系统和语言模型提供支持的人工智能 (AI) 来解决改进参考的过程。这种基于神经网络的系统(这里称之为 SIDE)可以识别不太可能支持其主张的维基百科引文,然后从网络上推荐更好的引文。该团队在现有的维基百科参考资料上训练这个模型,因此从数千名维基百科编辑的贡献和综合智慧中