谷歌整合 Research 和 DeepMind 资源,全力发展 AI

谷歌成立“Platforms & Devices”部门,整合统筹安卓软件和 Pixel 硬件资源之后,近日再次宣布重组旗下的 AI 部门,抽调 DeepMind 和 Google Research 团队组建新部门,集中力量研发、商用 AI。IT之家援引新闻稿内容,谷歌计划整合 DeepMind、Google Research 等团队资源,简化开发流程,集中资源开发性能更强、规模更大的 AI 模型。消息称在整合之后 DeepMind 团队主要负责构建 AI 模型,而 Google Research 则将重点转向基础计

谷歌成立“Platforms & Devices”部门,整合统筹安卓软件和 Pixel 硬件资源之后,近日再次宣布重组旗下的 AI 部门,抽调 DeepMind 和 Google Research 团队组建新部门,集中力量研发、商用 AI。

谷歌整合 Research 和 DeepMind 资源,全力发展 AI

IT之家援引新闻稿内容,谷歌计划整合 DeepMind、Google Research 等团队资源,简化开发流程,集中资源开发性能更强、规模更大的 AI 模型。

消息称在整合之后 DeepMind 团队主要负责构建 AI 模型,而 Google Research 则将重点转向基础计算机科学研究。

谷歌还正在整合 DeepMind 内部的 Responsible AI 团队,以加强模型开发、产品创造和用户体验之间的反馈流程。该公司还对人工智能功能实施更严格的发布要求,并加大投资测试和评估 AI。

相关资讯

谷歌内部项目:大模型AI智能体发现了代码漏洞

开源数据库引擎 SQLite 有 bug,还是智能体检测出来的! 通常,软件开发团队会在软件发布之前发现软件中的漏洞,让攻击者没有破坏的余地。 模糊测试 (Fuzzing)是一种常见的软件测试方法,其核心思想是将自动或半自动生成的随机数据输入到一个程序中,并监视程序异常。

大模型一定就比小模型好?谷歌的这项研究说不一定

在这个大模型不断创造新成就的时代,我们通常对机器学习模型有一个直观认知:越大越好。但事实果真如此吗?近日,Google Research 一个团队基于隐扩散模型(LDM)进行了大量实验研究,得出了一个结论:更大并不总是更好(Bigger is not Always Better),尤其是在预算有限时。论文标题:Bigger is not Always Better: Scaling Properties of Latent Diffusion Models论文地址:  近段时间,隐扩散模型和广义上的扩散模型取得的成

谷歌I/O开发者大会中国站:大模型技术进入全生态

本周三,谷歌在北京召开了中国开发者大会。除 5 月加州山景城的 I/O 大会之外,今年的 I/O Connect 环球之旅从德国柏林开始、到印度班加罗尔,也已来到中国北京。在这次活动中,来自多个不同领域的专家为国内开发者深入分享了谷歌在 AI、Web、移动端、云技术等领域的最新技术进展、开发工具和全球服务平台等内容。「中国是全球最大的开发者市场之一,我们的开发者一直是全球舞台上不可或缺的先锋力量,」谷歌大中华区总裁陈俊廷在开幕演讲中表示。「过去一年,来自中国的 25 个开发团队共有 31 款游戏和应用,在全球不同的