答案抽取正确率达96.88%,xFinder断了大模型「作弊」的小心思

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected]本文第一作者和通讯作者均来自上海算法创新研究院。其中,通讯作者李志宇博士毕业于中国人民大学计算机专业,并曾在阿里巴巴、小红书等互联网公司从事算法落地与研究工作,曾参与了包括千亿级商品知识图

图片

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected]

本文第一作者和通讯作者均来自上海算法创新研究院。其中,通讯作者李志宇博士毕业于中国人民大学计算机专业,并曾在阿里巴巴、小红书等互联网公司从事算法落地与研究工作,曾参与了包括千亿级商品知识图谱、用户图谱和舆情图谱的研发工作,累计发表论文四十余篇。李志宇当前在上海算法创新研究院大模型部门(由熊飞宇博士带领)负责整体的技术研发工作。研究院主页:https://www.iaar.ac.cn/

大语言模型(LLM)的迅速发展,引发了关于如何评估其公平性和可靠性的热议。

尽管现有的评估框架如 OpenCompass、LM Eval Harness 和 UltraEval 以及各种 Benchmark 推动了行业进步,但专注于这些评估框架核心组件可信度或可靠性度量的团队却为数不多。

近日,上海算法创新研究院和中国人民大学的研究团队发布了一篇名为《xFinder: Robust and Pinpoint Answer Extraction for Large Language Models》的论文。这篇论文深入分析了LLM评估框架的整体流程,重点评估了答案抽取器组件在大模型评估中的可靠性和一致性。

图片

论文地址:

https://arxiv.org/abs/2405.11874

Github链接:

https://github.com/IAAR-Shanghai/xFinder

Huggingface链接:

https://huggingface.co/collections/IAAR-Shanghai/xfinder-664b7b21e94e9a93f25a8412

当前的评估框架主要依赖正则表达式(RegEx)来抽取答案,但这种方法存在明显缺陷。人工复核结果显示,其最佳抽取正确率仅为74.38%,评估结果极不可靠。

此外,RegEx方法容易被有意或无意地拟合,增加了「作弊」的可能性,从而影响评估结果的可靠性和一致性。下图展示了LLM评估框架中RegEx组件抽取错误的情况。

图片

为了有效解决这一问题,上海算法创新研究院和中国人民大学的研究团队开发了一个名为 xFinder 的新模型,用于更准确地抽取关键答案。

xFinder 具有以下优势:

(1)不要求特定格式的答案输出,具备较强的答案抽取鲁棒性,抽取准确率高达95.18%,显著优于目前最佳LLM评估框架中的RegEx方法。

(2)支持多样化题型,能够将字母选择题自动转换为问答题,并支持不同题型的混排评估,从而降低测试者拟合题型的可能性。 

方法介绍

图片

xFinder的实现过程主要包括LLM响应内容的生成、KAF数据集的标注和xFinder的训练。为了实现 xFinder 模型的有效训练,团队构建了一个专门的数据集——关键答案查找(KAF)数据集。该数据集包含 26,900 个训练样本、4,961 个测试样本和 4,482 个泛化样本,涵盖多种评估任务。

大语言模型响应生成

               

首先,研究团队从现有的主要评估基准和报告中挑选了多个典型的评估任务数据集,这些任务被分类为四种类型:字母选项任务、短文本选项任务、分类标签任务和数学任务。

接着,团队使用不同系列的 LLM(如 Qwen、InternLM、ChatGLM 等)生成这些任务的数据对。通过多种 LLM,团队生成了丰富多样的数据对,为 xFinder 模型的训练提供了充分的数据支持。 

自动标注与人工复核

               

团队使用了一种策略,从 LLM 响应中提取关键答案并将其用作标签,以构建高质量的 KAF 数据集。为提高训练集的标注效率,他们采用了半自动化流程,通过不同提示使用 GPT-4 生成了两组标注,并利用自一致性策略筛选出标注不一致的项和所有数学问题,提交给人工复查。为了确保测试集和泛化集的有效性和可靠性,所有标签都经过两轮手动注释。 

训练 xFinder

               

为了增强 KAF 数据集的多样性和模型的泛化能力,研究团队采用了两种数据增强策略:

(1)模拟 LLM 响应:对 KAF 训练集中 50% 的字母选项问题进行修改,增加或删除一到两个选项,以模拟 LLM 的多样化响应。

(2)丰富提示形式:提取包含关键答案句子的 LLM 响应的 10%,替换其中的提示部分,例如将「The final answer is A」替换为「Based on the context of the question, A is the most likely answer」。

此外,团队使用 XTuner 工具和 QLoRA 方法,对 Llama 系列、Qwen 系列和 Gemma 系列等基座模型进行微调,最终获得 xFinder。

图片

实验结果

该团队进行了广泛的实验,评估xFinder在不同任务上的表现,并与现有的RegEx方法进行了对比。

KAF 测试集上的结果

               

在 KAF 测试集上,xFinder-qwen1505 的平均提取准确率达到了 96.88%,显著高于最佳评估框架中的 RegEx 方法的 74.38%。

具体来看,xFinder-qwen1505 在字母选项任务中的提取准确率为 97.35%;在短文本选项任务中为 96.83%;在分类标签任务中为98.05%;在数学选项任务中为 92.76%。这些结果表明,xFinder 在各类任务中均表现出色,显著提升了评估的准确性和可靠性。

图片

KAF 泛化集上的结果

               

在全新的 KAF 泛化集上(该泛化集使用了与 KAF 数据集中的训练集和测试集不同的 LLM 和测试任务生成的样例构造的),xFinder-qwen1505 展现了卓越的性能,平均提取准确率达到了 93.42%。

实验结果表明,xFinder 的表现不仅优于其他基于 RegEx 的评估框架,甚至显著优于 GPT-4,充分展示了其高鲁棒性和泛化能力。图片

在现实世界场景中的评估

               

研究团队使用 xFinder 和传统评估框架对 10 种 LLM 进行了综合评估。评估任务涵盖了 CommonsenseQA、BoolQ 和 GSM8K 等。通过对 10 种不同的 LLM 应用五种答案提取方案,进行了一系列对比实验。

概括起来,实验结果主要揭示了三个关键发现:

(1)同一模型在不同框架下的排名常常出现较大差异,难以准确反映模型的真实能力,显示出一致性较低。

(2)不同的 xFinder 在这些实验中显示出了高度的一致性,并且在提取答案的准确率上也超越了其他评测框架,表明 xFinder 是一种更加可靠的评测方法。

(3)与传统的字母选项设置相比,直接使用选项文本能显著提升排名的一致性,反映了字母选项设置的不稳定性。更多的细节和实验结果已在附录中展示,这些内容进一步证实了上述发现的有效性。

图片

结语

总的来说,xFinder通过优化关键答案提取模块,提高了LLM评估的准确性和可靠性。实验结果表明,xFinder在多种任务上均表现出色,具备较高的鲁棒性和泛化能力。未来,该研究团队将继续优化xFinder,并研究其他评估关键问题,为LLM性能的可靠评估提供坚实基础。

相关资讯

用童话训练AI模型,微软找到了探索生成模型参数的新切入点

即便大语言模型的参数规模日渐增长,其模型中的参数到底是如何发挥作用的还是让人难以琢磨,直接对大模型进行分析又费钱费力。针对这种情况,微软的两位研究员想到了一个绝佳的切入点,用生成简练但是又涵盖各种常见逻辑和语法的童话故事来作为模型的生成任务,这样做能在减少模型的学习负担的同时,保留模型对逻辑和语法的学习能力,进而用小模型来分析参数发挥的作用。这种方法可能会开创一条新的研究道路。人们都知道,学英语不是一件容易的事。但假如「学生」是一台计算机,就可以这样高效地学英语:只需将互联网上堆积如山的文本,输入一个名为神经网络的

下一代自动驾驶系统,少不了大模型,系统调研来了

本文介绍了将多模态大语言模型(MLLMs)整合到下一代自动驾驶系统中的模式。随着大语言模型 (LLM) 和视觉基础模型 (VFM) 的出现,受益于大模型的多模态人工智能系统有潜力像人类一样全面感知现实世界、做出决策。在最近几个月里,LLM 已经在自动驾驶研究中引起了广泛关注。尽管 LLM 具有巨大潜力,但其在驾驶系统中的关键挑战、机遇和未来研究方向仍然缺乏文章对其详细阐明。在本文中,腾讯地图、普渡大学、UIUC、弗吉尼亚大学的研究人员对这个领域进行了系统调研。该研究首先介绍了多模态大型语言模型 (MLLM) 的背景

总结374篇相关工作,陶大程团队联合港大、UMD发布LLM知识蒸馏最新综述

大语言模型(Large Language Models, LLMs)在过去两年内迅速发展,涌现出一些现象级的模型和产品,如 GPT-4、Gemini、Claude 等,但大多数是闭源的。研究界目前能接触到的大部分开源 LLMs 与闭源 LLMs 存在较大差距,因此提升开源 LLMs 及其他小模型的能力以减小其与闭源大模型的差距成为了该领域的研究热点。LLM 的强大能力,特别是闭源 LLM,使得科研人员和工业界的从业者在训练自己的模型时都会利用到这些大模型的输出和知识。这一过程本质上是知识蒸馏(Knowledge,