终于把机器学习中的损失函数搞懂了!!!

Mean Squared Error (MSE)MSE 是回归任务中最常用的损失函数之一。 它衡量模型预测值与实际值之间的平均平方误差。 公式:特点:对于大的误差,MSE 会给出更大的惩罚,因为误差被平方。

图片1. Mean Squared Error (MSE)

MSE 是回归任务中最常用的损失函数之一。

它衡量模型预测值与实际值之间的平均平方误差。

公式:

终于把机器学习中的损失函数搞懂了!!!

终于把机器学习中的损失函数搞懂了!!!

特点:

  • 对于大的误差,MSE 会给出更大的惩罚,因为误差被平方。
  • 对于异常值较为敏感。
复制
import tensorflow as tf
import matplotlib.pyplot as plt

class MeanSquaredError_Loss:
    """
    This class provides two methods to calculate Mean Squared Error Loss.
    """
    def __init__(self):
        pass

    @staticmethod
    def mean_squared_error_manual(y_true, y_pred):
        
        squared_difference = tf.square(y_true - y_pred)
        loss = tf.reduce_mean(squared_difference)
        return loss

    @staticmethod
    def mean_squared_error_tf(y_true, y_pred):
        
        mse = tf.keras.losses.MeanSquaredError()
        loss = mse(y_true, y_pred)
        return loss

if __name__ == "__main__":
    def mean_squared_error_test(N=10, C=10):
    
        # Generate random data
        y_true = tf.random.uniform(shape=(N, ), minval=-C, maxval=C, dtype=tf.float32)
        y_pred = tf.random.uniform(shape=(N, ), minval=-C, maxval=C, dtype=tf.float32)


        # Test the MeanSquaredError_Loss class
        mse_manual = MeanSquaredError_Loss.mean_squared_error_manual(y_true, y_pred)
        print(f"mean_squared_error_manual: {mse_manual}")

        mse_tf = MeanSquaredError_Loss.mean_squared_error_tf(y_true, y_pred)
        print(f"mean_squared_error_tensorflow: {mse_tf}")
        print()

        # Plot the points on a graph
        plt.figure(figsize=(8, 6))
        plt.scatter(y_true.numpy(), y_pred.numpy(), color='blue', label='Predicted vs Actual')
        plt.plot([-C, C], [-C, C], 'r--', label='Ideal Line')  # Diagonal line representing ideal predictions

        plt.title(f"Predictions vs Actuals\nMean Squared Error: {mse_manual.numpy():.4f}")
        plt.xlabel('Actual Values')
        plt.ylabel('Predicted Values')
        plt.legend()
        plt.grid(True)
        plt.show()

    mean_squared_error_test()

图片图片

2. Mean Absolute Error (MAE)

MAE 也是用于回归任务的损失函数,它计算的是预测值与实际值之间误差的绝对值的平均值。

公式:

终于把机器学习中的损失函数搞懂了!!!

特点:

  • MAE 不像 MSE 那样对异常值敏感,因为它没有平方误差。
  • 更加直观,直接反映了误差的平均大小。
复制
import tensorflow as tf
import matplotlib.pyplot as plt

class MeanAbsoluteError_Loss:
    """
    This class provides two methods to calculate Mean Absolute Error Loss.
    """
    def __init__(self):
        pass

    @staticmethod
    def mean_absolute_error_manual(y_true, y_pred):
        absolute_difference = tf.math.abs(y_true - y_pred)
        loss = tf.reduce_mean(absolute_difference)
        return loss

    @staticmethod
    def mean_absolute_error_tf(y_true, y_pred):
        mae = tf.keras.losses.MeanAbsoluteError()
        loss = mae(y_true, y_pred)
        return loss

if __name__ == "__main__":
    def mean_absolute_error_test(N=10, C=10):
        # Generate random data
        y_true = tf.random.uniform(shape=(N, ), minval=-C, maxval=C, dtype=tf.float32)
        y_pred = tf.random.uniform(shape=(N, ), minval=-C, maxval=C, dtype=tf.float32)


        # Test the MeanabsoluteError_Loss class
        mae_manual = MeanAbsoluteError_Loss.mean_absolute_error_manual(y_true, y_pred)
        print(f"mean_absolute_error_manual: {mae_manual}")

        mae_tf = MeanAbsoluteError_Loss.mean_absolute_error_tf(y_true, y_pred)
        print(f"mean_absolute_error_tensorflow: {mae_tf}")
        print()

        # Plot the points on a graph
        plt.figure(figsize=(8, 6))
        plt.scatter(y_true.numpy(), y_pred.numpy(), color='blue', label='Predicted vs Actual')
        plt.plot([-C, C], [-C, C], 'r--', label='Ideal Line')  # Diagonal line representing ideal predictions

        plt.title(f"Predictions vs Actuals\nMean Absolute Error: {mae_manual.numpy():.4f}")
        plt.xlabel('Actual Values')
        plt.ylabel('Predicted Values')
        plt.legend()
        plt.grid(True)
        plt.show()

    mean_absolute_error_test()

图片图片

3. Huber Loss

Huber Loss 是介于 MSE 和 MAE 之间的一种损失函数,当误差较小时,它像 MSE 一样处理,而当误差较大时,它像 MAE 一样处理。

这样可以在处理异常值时更稳定。

公式:

终于把机器学习中的损失函数搞懂了!!!

终于把机器学习中的损失函数搞懂了!!!

特点:

  • 对异常值更具有鲁棒性,同时保留了误差较小时的敏感性。
复制
import tensorflow as tf
import matplotlib.pyplot as plt

class Huber_Loss:
    """
    This class provides two methods to calculate Huber Loss.
    """
    def __init__(self, delta = 1.0):
        
        self.delta = delta

    def huber_loss_manual(self, y_true, y_pred):
        
        error = tf.math.abs(y_true - y_pred)
        is_small_error = tf.math.less_equal(error, self.delta)
        small_error_loss = tf.math.square(error) / 2
        large_error_loss = self.delta * (error - (0.5 * self.delta))
        loss = tf.where(is_small_error, small_error_loss, large_error_loss)
        loss = tf.reduce_mean(loss)
        return loss

    def huber_loss_tf(self, y_true, y_pred):
        
        huber_loss = tf.keras.losses.Huber(delta = self.delta)(y_true, y_pred)
        return huber_loss

if __name__ == "__main__":
    def huber_loss_test(N=10, C=10):
        # Generate random data
        y_true = tf.random.uniform(shape=(N, ), minval=-C, maxval=C, dtype=tf.float32)
        y_pred = tf.random.uniform(shape=(N, ), minval=-C, maxval=C, dtype=tf.float32)


        # Test the Huber_Loss class
        huber = Huber_Loss() 
        hl_manual = huber.huber_loss_manual(y_true, y_pred)
        print(f"huber_loss_manual: {hl_manual}")

        hl_tf = huber.huber_loss_tf(y_true, y_pred)
        print(f"huber_loss_tensorflow: {hl_tf}")
        print()

        # Plot the points on a graph
        plt.figure(figsize=(8, 6))
        plt.scatter(y_true.numpy(), y_pred.numpy(), color='blue', label='Predicted vs Actual')
        plt.plot([-C, C], [-C, C], 'r--', label='Ideal Line')  # Diagonal line representing ideal predictions

        plt.title(f"Predictions vs Actuals\nHuber Loss: {hl_manual.numpy():.4f}")
        plt.xlabel('Actual Values')
        plt.ylabel('Predicted Values')
        plt.legend()
        plt.grid(True)
        plt.show()

    huber_loss_test()

图片图片

4. Cross-Entropy Loss

Cross-Entropy Loss 是分类任务中广泛使用的损失函数,尤其是在二分类和多分类问题中。

它衡量的是模型输出的概率分布与实际类别的分布之间的差异。

公式:

对于二分类问题:

终于把机器学习中的损失函数搞懂了!!!

终于把机器学习中的损失函数搞懂了!!!

特点:

  • 当预测概率与实际标签匹配时,损失较低;否则损失较高。
  • 对于分类问题的优化尤为有效。
复制
import tensorflow as tf
import matplotlib.pyplot as plt

class Cross_Entropy_Loss:
    """
    This class provides two methods to calculate Cross-Entropy Loss.
    """
    def __init__(self):
        pass

    def cross_entropy_loss_manual(self, y_true, y_pred):
        y_pred /= tf.reduce_sum(y_pred)
        epsilon = tf.keras.backend.epsilon()
        y_pred_new = tf.clip_by_value(y_pred, epsilon, 1.)
        loss =  - tf.reduce_sum(y_true * tf.math.log(y_pred_new))
        return loss 

    def cross_entropy_loss_tf(self, y_true, y_pred):
        loss = tf.keras.losses.categorical_crossentropy(y_true, y_pred)
        return loss

if __name__ == "__main__":
    def cross_entropy_loss_test(N=10, C=1):
        # Generate random data
        y_true = tf.random.uniform(shape=(N, ), minval=-C, maxval=C, dtype=tf.float32)
        y_pred = tf.random.uniform(shape=(N, ), minval=-C, maxval=C, dtype=tf.float32)


        # Test the Cross-Entropy_Loss class
        cross_entropy = Cross_Entropy_Loss() 
        ce_manual = cross_entropy.cross_entropy_loss_manual(y_true, y_pred)
        print(f"cross_entropy_loss_manual: {ce_manual}")

        ce_tf = cross_entropy.cross_entropy_loss_tf(y_true, y_pred)
        print(f"cross_entropy_loss_tensorflow: {ce_tf}")
        print()

        # Plot the points on a graph
        plt.figure(figsize=(8, 6))
        plt.scatter(y_true.numpy(), y_pred.numpy(), color='blue', label='Predicted vs Actual')
        plt.plot([-C, C], [-C, C], 'r--', label='Ideal Line')  # Diagonal line representing ideal predictions

        plt.title(f"Predictions vs Actuals\nCross-Entropy Loss: {ce_manual.numpy():.4f}")
        plt.xlabel('Actual Values')
        plt.ylabel('Predicted Values')
        plt.legend()
        plt.grid(True)
        plt.show()

    cross_entropy_loss_test()

5. Hinge Loss

Hinge Loss 通常用于支持向量机(SVM)中。

它鼓励模型使得正确类别的得分高于错误类别至少一个边距(通常是1)。

公式:

终于把机器学习中的损失函数搞懂了!!!

特点:

  • 强制模型为正确类别创造一个“边距”,使得分类更加鲁棒。
  • 适用于线性分类器的优化。
复制
import tensorflow as tf
import matplotlib.pyplot as plt

class Hinge_Loss:
    """
    This class provides two methods to calculate Hinge Loss.
    """
    def __init__(self):
        pass

    def hinge_loss_manual(self, y_true, y_pred):
        
        pos = tf.reduce_sum(y_true * y_pred, axis=-1)
        neg = tf.reduce_max((1 - y_true) * y_pred, axis=-1)
        loss = tf.maximum(0, neg - pos + 1)
        return loss 

    def hinge_loss_tf(self, y_true, y_pred):
        
        loss = tf.keras.losses.CategoricalHinge()(y_true, y_pred)
        return loss

if __name__ == "__main__":
    def hinge_loss_test(N=10, C=10):
       
        # Generate random data
        y_true = tf.random.uniform(shape=(N, ), minval=-C, maxval=C, dtype=tf.int32)
        y_pred = tf.random.uniform(shape=(N, ), minval=-C, maxval=C, dtype=tf.int32)


        # Test the Hinge_Loss class
        cross_entropy = Hinge_Loss() 
        hl_manual = cross_entropy.hinge_loss_manual(y_true, y_pred)
        print(f"hinge_loss_manual: {hl_manual}")

        hl_tf = cross_entropy.hinge_loss_tf(y_true, y_pred)
        print(f"hinge_loss_tensorflow: {hl_tf}")
        print()

        # Plot the points on a graph
        plt.figure(figsize=(8, 6))
        plt.scatter(y_true.numpy(), y_pred.numpy(), color='blue', label='Predicted vs Actual')
        plt.plot([-C, C], [-C, C], 'r--', label='Ideal Line')  # Diagonal line representing ideal predictions

        plt.title(f"Predictions vs Actuals\nHinge Loss: {hl_manual.numpy()}")
        plt.xlabel('Actual Values')
        plt.ylabel('Predicted Values')
        plt.legend()
        plt.grid(True)
        plt.show()

    hinge_loss_test()

6. Intersection Over Union (IoU)

IoU 通常用于目标检测任务中,衡量预测的边界框与实际边界框之间的重叠程度。

公式:

终于把机器学习中的损失函数搞懂了!!!

特点:

  • 值域在0到1之间,1表示完美重叠,0表示没有重叠。
  • 用于评估边界框预测的准确性。
复制
import tensorflow as tf
import matplotlib.pyplot as plt

class IOU:
    def __init__(self):
        pass

    def IOU_manual(self, y_true, y_pred):
        intersection = tf.reduce_sum(tf.cast(tf.logical_and(tf.equal(y_true, 1), tf.equal(y_pred, 1)), dtype=tf.float32))
        union = tf.reduce_sum(tf.cast(tf.logical_or(tf.equal(y_true, 1), tf.equal(y_pred, 1)), dtype=tf.float32))
        iou = intersection / union
        return iou

    def IOU_tf(self, y_true, y_pred):
        iou_metric = tf.keras.metrics.IoU(num_classes=2, target_class_ids=[1])
        iou_metric.update_state(y_true, y_pred)
        iou = iou_metric.result()
        return iou

if __name__ == "__main__":
    def IOU_test(N=10, C=10):
        # Generate random data
        y_true = tf.random.uniform(shape=(N, ), minval=-C, maxval=C, dtype=tf.int32)
        y_pred = tf.random.uniform(shape=(N, ), minval=-C, maxval=C, dtype=tf.int32)

        y_true = tf.constant([[0, 1, 1, 0], 
                              [0, 1, 1, 0], 
                              [0, 0, 0, 0], 
                              [0, 0, 0, 0]], dtype=tf.float32)  # Example binary mask (ground truth)

        y_pred = tf.constant([[0, 1, 1, 0], 
                              [1, 1, 0, 0], 
                              [0, 0, 0, 0], 
                              [0, 0, 0, 0]], dtype=tf.float32)  # Example binary mask (prediction)

        iou = IOU()

        iou_manual = iou.IOU_manual(y_true, y_pred)
        print(f"IOU_manual: {iou_manual}")

        iou_tf = iou.IOU_tf(y_true, y_pred)
        print(f"IOU_tensorflow: {iou_tf}")

    IOU_test()

7. Kullback-Leibler (KL) Divergence

KL 散度是一种衡量两个概率分布之间差异的非对称性度量,通常用于生成模型和变分自编码器中。

公式:

终于把机器学习中的损失函数搞懂了!!!

特点:

  • 当 P 和 Q 完全相同时,KL 散度为0。
  • 适用于评估模型预测的概率分布与目标概率分布之间的差异。
复制
import tensorflow as tf
import matplotlib.pyplot as plt

class Kullback_Leibler:
    """
    This class provides two methods to calculate Kullback-Leibler Loss.
    """
    def __init__(self):
        pass

    def kullback_leibler_manual(self, y_true, y_pred):
        epsilon = tf.keras.backend.epsilon()
        y_true = tf.clip_by_value(y_true, epsilon, 1)
        y_pred = tf.clip_by_value(y_pred, epsilon, 1)
        
        loss = tf.reduce_sum(y_true * tf.math.log(y_true / y_pred), axis=-1)
        return loss

    def kullback_leibler_tf(self, y_true, y_pred):
        loss = tf.reduce_sum(tf.keras.losses.KLDivergence()(y_true, y_pred))
        return loss

if __name__ == "__main__":
    def kullback_leibler_test(N=5, C=1):
        # Generate random data
        y_true = tf.random.uniform(shape=(N, ), minval=0, maxval=C, dtype=tf.float32)
        y_pred = tf.random.uniform(shape=(N, ), minval=0, maxval=C, dtype=tf.float32)

        #converting them to probabilities
        y_true /= tf.reduce_sum(y_true)
        y_pred /= tf.reduce_sum(y_pred)

        # Test the kullback_leibler class
        kl = Kullback_Leibler() 
        kl_manual = kl.kullback_leibler_manual(y_true, y_pred)
        print(f"kullback_leibler_manual: {kl_manual}")

        kl_tf = kl.kullback_leibler_tf(y_true, y_pred)
        print(f"kullback_leibler_tensorflow: {kl_tf}")
        print()

        # Plot the points on a graph
        plt.figure(figsize=(8, 6))
        plt.scatter(y_true.numpy(), y_pred.numpy(), color='blue', label='Predicted vs Actual')
        plt.plot([0, C], [0, C], 'r--', label='Ideal Line')  # Diagonal line representing ideal predictions

        plt.title(f"Predictions vs Actuals\nKullback-Leibler Loss: {kl_manual.numpy()}")
        plt.xlabel('Actual Values')
        plt.ylabel('Predicted Values')
        plt.legend()
        plt.grid(True)
        plt.show()

    kullback_leibler_test()

图片图片

相关资讯

深度学习领域最常用的10个激活函数,一文详解数学原理及优缺点

激活函数是神经网络模型重要的组成部分,本文作者Sukanya Bag从激活函数的数学原理出发,详解了十种激活函数的优缺点。

在理解通用近似定理之前,你可能都不会理解神经网络

通用近似定理很好地解释了为什么神经网络能工作以及为什么它们经常不起作用。

Spring AI 再更新:如何借助全局参数实现智能数据库操作与个性化待办管理

引言好的,今天我们继续聊一下Spring AI的相关内容。 在10月的时候,我使用Spring AI搭建了一个简易版的个人助理系统,整体来说效果还是非常不错的。 通过这次尝试,我对业务系统与AI结合的探索有了更为明确的理解和实践。