中国科大利用 AI,破解催化领域重大科学难题、成果登《Science》

成果将助力高活性、高选择性、高稳定性催化剂的优化设计,有望加快新催化材料、新催化反应的发现,助推能源、环境和材料的绿色升级和可持续发展。

中国科学技术大学宣布,李微雪教授课题组利用人工智能(AI)在催化基础研究中取得重要成果。

该研究通过可解释 AI 技术在实验数据中建立了金属-载体相互作用与材料基本性质之间的控制方程,揭示了决定金属-载体相互作用的本质因素,提出了强金属-金属作用原理性判据,解决了氧化物载体包覆金属催化剂的难题。

AI在线注:可解释 AI(Explainable Artificial Intelligence,XAI)是指智能体以一种可解释、可理解、人机互动的方式,与人工智能系统的使用者、受影响者、决策者、开发者等,达成清晰有效的沟通,以取得人类信任,同时满足监管要求。

中国科大利用 AI,破解催化领域重大科学难题、成果登《Science》

▲ 可解释性人工智能揭示“金属-载体相互作用”本质,图源中国科学技术大学

这一最新研究汇总了多篇文献的实验界面作用数据,涵盖了 25 种金属和 27 种氧化物。研究通过可解释性 AI 算法,以材料性质作为基本特征,经过迭代式的数学操作,构建了由高达 300 亿个表达式组成的特征空间。研究利用压缩感知算法,结合领域知识和理论推导,筛选出物理清晰、数值准确的描述符,建立了金属-载体相互作用与材料性质之间的控制方程。

上述成果将助力高活性、高选择性、高稳定性催化剂的优化设计,有望加快新催化材料、新催化反应的发现,助推能源、环境和材料的绿色升级和可持续发展。

同时,这一研究表明可解释性 AI 算法能够在实验数据中构建数学模型,挖掘隐含的物理规律,建立具有预测能力的理论,加速科学原理发现的过程,将推动 AI 技术与化学研究的深度融合,为实现重要科学问题和技术创新突破提供新的视角和可能的解决方案。‎

相关研究成果发表于《科学(Science)》:https://www.science.org/doi/10.1126/science.adp6034

相关资讯

5天完成6个月实验量,加速催化研究,「自动驾驶」催化实验室Fast-Cat登Nature子刊

编辑 | 紫罗「自动驾驶实验室」是未来?今年 1 月底,荷兰阿姆斯特丹大学开发自主化学合成 AI 机器人「RoboChem」。一周内,可以优化大约 10~20 个分子的合成。这需要博士生几个月的时间。还有去年 DeepMind 团队开发的自主实验室 A-Lab,17 天自主合成 41 种新化合物。卡内基梅隆大学的 Coscientist,自主设计、规划和执行复杂的科学实验......现在,来自美国北卡罗来纳州立大学和全球特种材料公司伊士曼化学公司(Eastman Chemical Company)合作,开发了一个「

简化芯片设计传统,AI训练的新型算法正改变芯片研发范式

编辑丨&自1971年第一个商用微处理器的草图面世以来,芯片设计已经取得了长足的进步。 但是,随着芯片变得越来越复杂,设计人员必须解决的问题也越来越复杂。 而我们目前的工具并不总是能胜任这项任务。

消息称英伟达有意收购 AI 基础设施虚拟化创企 Run:ai,交易金额最高十亿美元

据外媒 SiliconANGLE 报道,英伟达有意收购 AI 基础设施虚拟化初创企业 Run:ai,交易金额最高可达 10 亿美元(IT之家备注:当前约 72 亿元人民币)。Run:ai 的同名工作负载管理平台近日率先获得英伟达 DGX SuperPOD 认证。其 AI 编排技术可帮助用户轻松运行 AI 和机器学习项目,满足对生成式 AI 和大模型不断增长的要求。Run:ai 由其 CEO 奥姆里・盖勒(Omri Geller)和 CTO 罗宁・达尔(Ronen Dar)于 2018 年创立。两人是在特拉维夫大学电