引入多感官数据学习,华人学者Ruohan Gao摘得2021 UT-Austin最佳博士论文奖

UT-Austin 本年度的最佳博士论文奖获得者 Ruohan Gao,目前是斯坦福大学的博士后研究员。

引入多感官数据学习,华人学者Ruohan Gao摘得2021 UT-Austin最佳博士论文奖

今年 5 月,德克萨斯大学奥斯汀分校(UT-Austin)研究生院公布了 2021 年度各个专业和学生奖项的获奖者。这些奖项旨在表彰研究生院成员在学术、教学和专业服务方面的卓越表现。

在本年度的评选中,华人学者 Ruohan Gao 的博士学位论文《Look and Listen: From Semantic to Spatial Audio-Visual Perception》获得了 Michael H. Granof 奖。

引入多感官数据学习,华人学者Ruohan Gao摘得2021 UT-Austin最佳博士论文奖

杰出博士论文奖设立于 1979 年,旨在表彰出色的研究以及鼓励最高的研究、写作、学术水平。每年颁发三个奖项,其中一篇会被选中获得该校的最佳论文奖「Michael H. Granof 奖」。杰出论文奖获得者将获得 5000 美元奖金,Granof 奖获得者获得 6000 美元奖金。

Ruohan Gao

引入多感官数据学习,华人学者Ruohan Gao摘得2021 UT-Austin最佳博士论文奖

Ruohan Gao2015 年于香港中文大学(CUHK)信息工程系获得一等荣誉学位,导师为刘永昌(Wing Cheong Lau)教授。

博士期间,Ruohan Gao 师从 Kristen Grauman 教授。他的研究兴趣是计算机视觉、机器学习、数据挖掘等,特别是视频中的多模态学习和多模态下的 embodied learning。2021 年初,Ruohan Gao 从德克萨斯大学奥斯汀分校获得博士学位。

目前,Ruohan Gao 是斯坦福大学视觉与学习实验室(SVL)的博士后研究员。

此外,Ruohan Gao 还获得过谷歌博士生奖研金(Google Ph.D Fellowship)、Adobe 研究奖研金(Adobe Research Fellowship)等荣誉。

这篇论文研究了什么?

引入多感官数据学习,华人学者Ruohan Gao摘得2021 UT-Austin最佳博士论文奖

论文链接:https://ai.stanford.edu/~rhgao/Ruohan_Gao_dissertation.pdf

理解场景和事件本质上是一种多模态经验。人们通过观察、倾听 (以及触摸、嗅和品尝) 来感知世界,特别是物体发出的声音,无论是主动产生的还是偶然发出的,都提供了关于自身物理属性和空间位置的有价值的信号,正如钹在舞台上撞击,鸟在树上鸣叫,卡车沿着街区疾驰,银器在抽屉里叮当作响……

尽管通过「看」,也就是根据物体、行为或人的外表检测的识别取得了重大进展,但它往往不能够「听」。在这篇论文中,作者证明了与视觉场景和事件同步的音频可以作为丰富的训练信号来源,用于学习 (视听) 视觉模型。此外,作者开发了计算模型,利用音频中的语义和空间信号,从连续的多模态观测中理解人、地点和事物。

引入多感官数据学习,华人学者Ruohan Gao摘得2021 UT-Austin最佳博士论文奖

当前大多数计算机视觉系统的现状是从大量「无声」数据集的标记图像中学习,而该论文研究目标是既要会倾听,又要了解视觉世界。

作者表示,受到人类利用所有感官对世界进行感知的启发,自己的长期研究目标是建立一个系统,通过结合所有的多感官输入,能够像人类一样感知世界。在论文的最后一章,作者概述了在此博士论文之外希望追求的未来研究方向。

引入多感官数据学习,华人学者Ruohan Gao摘得2021 UT-Austin最佳博士论文奖

图 1.2: 音频本身是一个监督信号,用于语义和空间理解。

研究的首要目标是从视频和嵌入智能体中复现视听模型: 当多个声源存在时,算法如何知道发声对象是什么以及在哪里?这些视听模型如何在传统的视听任务有所提升?为了解决这些问题,该研究利用了音频中的语义和空间信号,从连续的多模态观测中理解人、地点和事物(图 1.2)。

这篇论文研究了以下四个重要问题,以逐步接近视听场景综合理解的最终目标:

同时观看和聆听包含多个声源的未标记视频,以学习音视频源分离模型(第 3 章、第 4 章和第 5 章);

利用音频作为预览机制,在未修剪的视频中实现高效的动作识别(第 6 章);

利用未标记视频中的视觉信息推断双耳音频,将平面单声道音频「提升」为空间化的声音(第 7 章);

通过回声定位学习空间图像表征,监测来自与物理世界的声学互动(第 8 章)。

作者表示,本论文对视听学习的研究,体现了无监督或自监督的多感官数据学习对人工智能的未来发展具有积极而重要的意义。

更多细节请参见论文原文。

相关资讯

Jim Gao:曾助谷歌节能40%的AI专家,如今致力打造“虚拟工厂操作员”

只是使用了AI就让工厂能耗降低40%是的,你没有看错,就是降低了整整40%,几乎将能耗砍半! 这是Jim Gao在Google大型数据中心的一次尝试。 这位华人机械工程师巧妙地使用了AI系统辅助控制数据中心的复杂的工业系统,AI在实现了预期系统优化的基础上,还做到了他从没幻想过的超低冷却能耗。

教授何恺明在MIT的第一堂课

700 座的大教室,相比去年增加一倍容量,仍然座无虚席:这就是麻省理工学院(MIT)计算机视觉课《Advances in Computer Vision》6.8300 在 2024 新学期的盛况。今年是四位教授,每人负责一部分课程:课程信息:,能选上这课的学生太幸运了,每节都是计算机视觉顶会 CVPR Oral 的体验。对于很多人来说,其中最为期待的自然是新晋教授何恺明的课。MIT 电气工程与计算机科学系副教授何恺明(Kaiming He)在 3 月 7 日走上讲台上完成了自己「人生中教的第一堂课」。据参与现场的同

抖音「神曲」那么多,字节跳动是如何玩转亿级曲库的?

在今年的音乐科技顶会 ISMIR 2021(International Society for Music Information Retrieval)上,字节跳动海外技术团队有 7 篇论文入选,涵盖了音乐分类、音乐标签、音源分离、音乐结构分析等多个技术方向。如今抖音已经成为音乐宣发的一个重要渠道。一支支音乐先在抖音上以短视频 BGM 火起来,再扩散到各大音乐平台上。抖音神曲甚至成了很多音乐平台的一个重要分类。有人说神曲能火是因为歌词和旋律简单,听得多了就印在脑子里。但是对一个有着海量用户、复杂多样内容场景的短视频