过程

图结构转文本序列,大模型直接读懂!图推理性能大涨

大语言模型直接理解复杂图结构的新方法来了:将图(Graph)转换为适合Transformer架构的线性token序列。 belike:这种最新图线性化方法,反映了自然语言中局部依赖性和全局对齐性两个关键属性,即:不仅需要保留基于前文上下文预测下一个token的能力(局部依赖性),而且不同图的token序列应该从具有相似特征的token开始或结束(全局对齐性),就像自然语言文本经常以特定词语开头或结尾。 如此一来,在海量文本数据上训练的LLM也能更好地理解图结构中的关系和属性,如节点计数、最大度数计算和图式形状分类等图推理任务都能完成。
  • 1