共表达

可重用性报告:使用图神经网络捕获生物对象的属性及其关系

编辑 | 萝卜皮图神经网络(GNN),尤其是图卷积网络(GCN),已越来越多地用于对复杂交互进行建模。GNN 背后的一个基本思想是,对象的某些属性(由图中的节点表示)由与其直接或间接交互的对象的属性反映,其中直接交互由图中的边表示。在生物医学中,GNN 已被用于各种应用,例如预测蛋白质功能和药物-疾病关联。之前,Schulte-Sasse 团队提出了 GCN 在生物医学中的新用途:识别癌症基因。他们的方法 EMOGI(可解释的多组学图集成)通过在蛋白质-蛋白质相互作用(PPI)网络上聚合信息来集成多组数据。综合信息
  • 1