跟踪
基于Transformer的高效单阶段短时RGB-T单目标跟踪方法
引言如图 1所示,现有的三阶段 RGB-T 单目标跟踪网络通常采用两个独立的特征提取分支,分别负责提取两个模态的特征。然而,相互独立的特征提取分支会导致两个模态在特征提取阶段缺乏有效的信息交互。因此,一旦网络完成离线训练,其仅能从每个模态图像中提取固定的特征,无法根据实际的模态状态动态调整,以提取更具针对性的动态特征。这一局限性制约了网络对多样的目标双模态外观,以及模态外观间动态对应关系的适应能力。如图 2所示,这种特征提取方式并不适合 RGB-T 单目标跟踪的实际应用场景,特别是在复杂环境下,因为被跟踪目标的任意
4/22/2024 3:53:00 PM
特邀精选
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
机器人
模型
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
3D
Anthropic
AI for Science
AI设计
机器学习
GPU
开发者
AI视频
场景
华为
预测
百度
人形机器人
伟达
苹果
Transformer
深度学习
模态
xAI
字节跳动
Claude
大语言模型
搜索
驾驶
文本
神器推荐
具身智能
Copilot
LLaMA
算力
视频生成
安全
干货合集
视觉
应用
大型语言模型
科技
亚马逊
特斯拉
AGI
训练
2024