上海AI实验室开源发布高质量语料“万卷CC”

近日,上海人工智能实验室(上海AI实验室)发布新一代高质量大模型预训练语料“万卷CC”(WanJuan-CC),首批开源的语料覆盖过去十年互联网上的公开内容,包含1千亿字符(100B token),约400GB的高质量英文数据。 作为“大模型语料数据联盟”今年首发的开源语料,WanJuan-CC将为学界和业界提供大规模、高质量的数据支撑,助力构建更智能可靠的AI大模型。 预训练数据的质量对大模型整体性能至关重要。

近日,上海人工智能实验室(上海AI实验室)发布新一代高质量大模型预训练语料“万卷CC”(WanJuan-CC),首批开源的语料覆盖过去十年互联网上的公开内容,包含1千亿字符(100B token),约400GB的高质量英文数据。作为“大模型语料数据联盟”今年首发的开源语料,WanJuan-CC将为学界和业界提供大规模、高质量的数据支撑,助力构建更智能可靠的AI大模型。

预训练数据的质量对大模型整体性能至关重要。当前,CommonCrawl(CC)数据集因其规模大、跨度广而成为国际主流大模型训练数据的重要来源。与此同时,其原始数据格式复杂、数据质量低等问题,或将导致模型训练效率低,甚至可能引发价值观对齐等方面的隐患。

中国科研人员通过原创的数据清洗技术,从CC数据库中抽取约1300亿份原始数据文档进行再处理,“萃取”出其中约1.38%的高质量内容,构建成WanJuan-CC语料库。实验结果显示,WanJuanCC具有高文本质量、高信息密度的特点,可满足当前大模型训练对大规模高质量语料的需求。

上海AI实验室发布的书⽣·浦语2.0(InternLM2)即以WanJuan-CC为关键数据作支撑,使训练效率和语言建模能力大幅提升,综合性能领先开源社区。

开源数据:https://opendatalab.com/OpenDataLab/WanJuanCC

高质量语料驱动,效率性能双提升

近期,上海AI实验室发布了新一代大语言模型书⽣·浦语2.0(InternLM2)。回归语言建模本质,InternLM2综合性能达到同量级开源模型的领先水平。模型基座语言建模能力的提升,则得益于预训练文本质量及信息密度的增强。作为InternLM2的关键预训练语料,WanJuan-CC的文本质量和高信息密度经过了模型实际验证。在InternLM2的训练过程中,在仅使用约60%的训练数据情况下,模型即获得了与此前使用1T token相同的性能表现,大幅提升训练效率,并使模型在相同语料规模上取得了更好的性能。

 上海AI实验室开源发布高质量语料“万卷CC”

绿色曲线为InternLM2使用WanJuan-cc作为预训练语料,在不同数据规模上取得的任务性能分布,结果显示,WanJuan-CC可大幅提升模型训练效率

研究团队通过对CC原始数据进行清洗,去除了网页代码和重复内容,同时利用分类模型剔除了广告和质量较差的信息,并通过内容一致性、语法正确性、数据噪声和信息价值等四个维度,对语言的流畅性进行评估。为验证数据质量,研究团队使用WanJuan-CC和RefineWeb(从CommonCrawl中抽取并构建的主流英文预训练语料)分别重新训练了参数量1B的模型,并进行评测。结果显示,由WanJuan-CC作为训练数据的模型在多项验证中取得了更优效果。

 上海AI实验室开源发布高质量语料“万卷CC”

基于WanJuan-CC训练的1B模型在Pile验证集评测效果更优,这表明由WanJuan-CC训练的模型在不同领域和各类知识上拥有更强能力

 

四重处理, 百里挑一“萃取”高质量数据

为从浩如烟海的CC数据库中“精选”最可靠的信息,研究团队搭建了高性能分布式数据处理基础设施,通过启发式规则过滤、多层级数据去重、内容安全过滤、数据质量过滤等四个步骤,从原始数据中“萃取”出高质量数据,数据留存率仅为原数据的1.38%。

上海AI实验室开源发布高质量语料“万卷CC”

通过原创技术,对CC原始数据进行多阶段处理,得到了高信息密度的WanJuan-CC

研究团队首先从CC中抽取了约1300亿份原始数据文档,然后基于高性能数据处理工作流得到2.2T token(35.8亿个文档)安全数据,最后,根据质量排序精选出1T token(3.6亿个文档)质量最高的数据,构建成WanJuan-CC。如以下柱状图所示,在WanJuan-CC构建过程中的每一阶段,均进行了大比例的数据去除。对于仅占原CC数据比例2.76%的安全信息,研究人员再次“筛”掉五成低质内容,最终呈现出“百里挑一”的高质量数据。

上海AI实验室开源发布高质量语料“万卷CC”

各清洗阶段的文档保留率和去除率(本图使用对数坐标轴)

 

数据质量高,模型更可靠

为推动训练更智能可靠的AI大模型,研究团队以保障数据安全性为前提,在数据处理的各环节均实施了多项安全加固措施,使WanJuan-CC成为目前开源CC语料中首个在毒性(Toxic)、色情(Porn)和个人隐私三方面同时进行了安全加固的英文语料,因而在价值对齐方面具有更高的可靠性。

上海AI实验室开源发布高质量语料“万卷CC”

与部分开源CC语料多维度对比,在毒性、色情和个人隐私等方面,WanJuan-CC均进行了安全加固

 研究人员分别对WanJuan-CC、Redpajama和Refineweb数据集进行了10万条数据的抽样,从毒性、侮辱、恐吓等7个维度进行评分,以验证各数据集的信息安全性。结果显示,WanJuan-CC在各维度上的体现出最高安全性。

上海AI实验室开源发布高质量语料“万卷CC”

WanJuan-CC与其他开源英文CC语料安全性对比

下载更多开源语料,请登录大模型语料数据联盟开源数据服务指定平台:

https://opendatalab.com

相关资讯

港中文岳翔宇老师招收人工智能全奖博士生、博士后、研究助理、实习生

​新的一期博士招生正式启动!本期我们将为大家介绍香港中文大学岳翔宇老师招收人工智能全奖博士生、博士后、研究助理、实习生的相关信息。

NeurIPS 2023 Spotlight | 腾讯AI Lab绝悟新突破:在星际2灵活策略应对职业选手

近日,腾讯 AI Lab 的游戏 AI 团队宣布了其决策智能 AI "绝悟" 在《星际争霸 2》中的最新研究进展,提出一种创新的训练方法显著提升了 AI 的局内策略应变能力,使其在考虑了 APM 公平的对战环境中,与 3 位国内顶尖的神族职业选手各进行多达 20 局神族 vs 神族的对战,稳定地保持 50% 及以上的胜率。该成果已获 NeurIPS 2023 Spotlight 论文收录。实时策略游戏(RTS)以其复杂的游戏环境更贴近现实世界,一直是 AI 研究的焦点和挑战所在。《星际争霸 2》作为其中极具代表性的

专访腾讯AI Lab姚建华、杨帆:腾讯 AI Lab 为何瞄准单细胞蛋白质组学?

在生物医学研究的前沿领域,“单细胞蛋白质组学”是怎样的存在? 用一个比喻来说,它就像一把钥匙,能够开启细胞内部世界的大门,让我们得以窥见细胞如何通过蛋白质的相互作用来执行生命活动。 这一研究领域的突破,不仅能够推动科学界对生命过程的理解,也为精准医疗的实现奠定了基础。