「两全其美」,从头设计分子,深度学习架构S4用于化学语言建模

编辑 | KX生成式深度学习正在重塑药物设计。化学语言模型 (CLM) 以分子串的形式生成分子,对这一过程尤为重要。近日,来自荷兰埃因霍芬理工大学(Eindhoven University of Technology)的研究人员将一种最新的深度学习架构(S4)引入到从头药物设计中。结构化状态空间序列(Structured State Space Sequence,S4)模型在学习序列的全局属性方面表现卓越,那么 S4 能否推进从头设计的化学语言建模?为了给出答案,研究人员系统地在一系列药物发现任务上对 S4 与最先

「两全其美」,从头设计分子,深度学习架构S4用于化学语言建模

编辑 | KX

生成式深度学习正在重塑药物设计。化学语言模型 (CLM) 以分子串的形式生成分子,对这一过程尤为重要。

近日,来自荷兰埃因霍芬理工大学(Eindhoven University of Technology)的研究人员将一种最新的深度学习架构(S4)引入到从头药物设计中。

结构化状态空间序列(Structured State Space Sequence,S4)模型在学习序列的全局属性方面表现卓越,那么 S4 能否推进从头设计的化学语言建模?

为了给出答案,研究人员系统地在一系列药物发现任务上对 S4 与最先进的 CLM 进行了基准测试,例如生物活性化合物的鉴定以及类药物分子和天然产物的设计。S4 在学习复杂分子特性的同时,还具有探索多种支架的优越能力。

最后,当前瞻性地应用于激酶抑制时,S4 设计的 10 个分子中有 8 个被分子动力学模拟预测为高活性。

总而言之,S4 在化学语言建模中极具潜力,尤其是在捕捉生物活性和复杂分子性质方面。这是首次将状态空间模型应用于分子任务。

相关研究以「Chemical language modeling with structured state space sequence models」为题,于 7 月 22 日发布在《Nature Communications》上。

图片

论文链接:https://www.nature.com/articles/s41467-024-50469-9

从头开始设计具有所需特性的分子是一个「大海捞针」的问题。化学宇宙包含多达 10^60 个小分子,在相当大的程度上仍处于未知状态。

生成式深度学习无需手工设计规则即可生产所需的分子,从而以省时、低成本的方式探索化学宇宙。特别是,CLM 已经产生了经过实验验证的生物活性设计,并作为强大的分子发生器脱颖而出。

CLM 采用为序列处理开发的算法来学习「化学语言」,即如何生成化学有效(语法)并具有所需特性(语义)的分子。这是通过将分子结构表示为字符串符号来实现的,例如简化分子输入行输入系统 (SMILES) 等。然后,这些分子字符串用于模型训练,并随后以文本形式生成分子。

图片

图示:化学语言建模的结构化状态空间序列(S4)模型的关键概念。(来源:论文)

几种用于从头设计的 CLM 架构,其中最受欢迎的是长短期记忆 (LSTM) 模型和 Transformer 架构。

结构化状态空间序列模型 (S4) 是状态空间架构家族中快速发展的新成员,其在深度学习社区中越来越受到关注。S4 在音频、图像和文本生成中表现出色,并且具有「双重性质」:它们 (1) 在整个输入序列上进行训练以学习复杂的全局属性,(2) 一次生成一个字符串元素,从而结合了 Transformer 和 LSTM 各自的一些优势。受这种「两全其美」的启发,研究人员在此提出以下问题:S4 能否推动化学语言建模的最新发展?

在该研究中,研究人员将 S4 应用于 SMILES 字符串上的化学语言建模,并针对与药物设计相关的各种任务对其进行基准测试,从学习生物活性到化学空间探索和天然产物设计。

类药物分子和天然产物设计

研究人员在一系列药物发现任务上对 S4 与最先进的 CLM 进行了基准测试,例如类药物分子和天然产物的设计。

首先,对 S4 进行了分析,以了解其设计从 ChEMBL 数据库中提取的类药物小分子(SMILES 长度低于 100 个 tokens)的能力。

图片

所有 CLM 均生成了超过 91% 的有效分子、91% 的独特分子和 81% 的新分子。S4 通过生成比基准更多的新分子(大约 4000 到 12,000 多个)来设计最有效、最独特和最新颖的分子,并显示出良好的学习 SMILES 字符串「化学语法」的能力。与现有的从头设计方法相比,S4 的潜力在 MOSES 基准上得到了进一步证实,其中 S4 始终位列表现最好的深度学习方法之列。

S4 还针对比类药物分子更具挑战性的分子实体进行了进一步测试。为此,研究人员评估了其设计天然产物 (NPs) 的能力。与合成小分子相比,NPs 往往具有更复杂的分子结构和环系统,以及更大比例的 sp3 杂化碳原子和手性中心。这些特征对应于平均更长的 SMILES 序列,具有更多的长程依赖性,并使天然产物成为 CLM 的具有挑战性的测试用例。

图片

所有 CLM 都可以设计天然产物,但与类药物分子相比,其性能较低。S4 设计的有效分子数量最多,比 S4 多出约 6000 到 12,000 个分子(好 7-13%),而 LSTM 的新颖性最高,比 S4 多出约 2000 个分子(2%)。

最后,还分析了增加 SMILES 长度时 CLM 架构的训练和生成速度,以测试它们在设计更大分子(如天然产物)时的实际适用性。分析强调,由于其双重性,S4 在训练过程中与 GPT 一样快(两者都比 LSTM 快约 1.3 倍),并且在生成方面最快。这进一步主张引入 S4 作为分子设计的有效方法,与 GPT 和 LSTM 相比,「兼具两全其美」。

前瞻性从头设计

研究人员使用 S4 进行了一项前瞻性计算机模拟研究,重点是设计丝裂原活化蛋白激酶 1 (MAPK1) 的抑制剂,这是肿瘤治疗的相关靶点。然后通过分子动力学 (MD) 评估设计的假定生物活性。

图片

图示:使用 S4 进行假定 MAPK1 抑制剂的前瞻性从头设计。(来源:论文)

S4 模型经过微调,然后使用微调模型的最后五个 epochs 生成 256K 个分子。通过对数似然得分和与训练集的支架相似性对设计进行排序和筛选,10 个得分最高的分子使用 MD 模拟进行进一步表征。

通过 MD 预测,10 个设计中有 8 个对预期目标具有生物活性,并且预测亲和力与最接近的微调分子相当或更高,这些结果进一步证实了 S4 用于从头药物设计的潜力。

分子 S4 的机会

总之,本研究率先将状态空间模型引入化学语言建模,重点关注结构化状态空间 (S4)。S4 独特的双重性质,包括训练中的卷积和循环生成,使其特别适合从 SMILES 字符串开始的从头设计。

研究人员在各种药物发现任务上与 GPT 和 LSTM 进行了系统比较,揭示了 S4 的优势:虽然循环生成 (LSTM 和 S4) 在学习化学语法和探索各种支架方面更胜一筹,但对整个 SMILES 序列进行整体学习 (GPT 和 S4) 在捕捉某些复杂特性(如生物活性)方面表现出色。

S4 具有双重性质,「兼具两全其美」:它在设计有效且多样化的分子方面与 LSTM 表现相当或更好,并且在捕捉复杂分子性质方面系统性地优于基准,同时保持计算效率。

S4 在 MAPK1 抑制中的应用已通过 MD 模拟得到验证,这进一步展示了其设计强效生物活性分子的潜力。未来,研究人员将前瞻性地将 S4 与湿实验室实验相结合,以增强其在该领域的影响。

S4 在分子科学领域还有许多方面有待探索,例如其在更长序列(例如大环肽和蛋白质序列)和其他分子任务(例如有机反应规划和基于结构的药物设计 中的潜力。

未来,S4 在分子发现中的应用将不断增加,并有可能取代 LSTM 和 GPT 等广泛应用的化学语言模型。

相关资讯

筛选数十亿化合物库,华盛顿大学药物AI虚拟筛选平台,登Nature子刊

编辑 | KX基于结构的虚拟筛选在药物发现中发挥着重要作用,科学家对数十亿种化合物库的筛选越来越感兴趣。但只有少数的筛选取得成功,此外,对于基于物理的对接方法而言,对整个超大型库进行虚拟筛选耗时且成本高昂。基于此,华盛顿大学研究团队开发了一种高度准确的基于结构的虚拟筛选方法 RosettaVS,用于预测对接姿势和结合亲和力。RosettaVS 在广泛的基准测试中优于其他最先进的方法。研究人员将其整合到一个新的开源 AI 加速虚拟筛选平台中,用于药物发现。利用这个平台,针对两个不相关的靶标,即泛素连接酶靶标 KLHD

登Science,药物亲和力<5纳摩尔,加州大学开发特异性药物结合蛋白的从头计算方法

编辑 | 萝卜皮随着抗癌研究的不断深入,科学家们一直在寻找新的方法来提高治疗效果并减少副作用。小分子结合蛋白的从头设计技术是解决这一问题的关键。然而,高亲和力结合和可调特异性,通常需要在计算设计后进行复杂的筛选和优化,这为研究造成了重大阻碍。加州大学旧金山分校的研究人员开发了一种名为 COMBS 的从头蛋白质设计计算方法,并设计了能与新兴抗癌药物紧密结合的蛋白质。实验验证表明,所设计的蛋白质与药物的亲和力强度达到了小于 5 纳摩尔的水平;X 射线晶体结构证实了所设计蛋白质与药物相互作用的准确性。这表明,科学家可以通

成功率提升15%,浙大、碳硅智慧用LLM进行多属性分子优化,登Nature子刊

编辑 | 萝卜皮优化候选分子的物理化学和功能特性一直是药物和材料设计中的一项关键任务。 虽然人工智能很适合处理平衡多个(可能相互冲突的)优化目标的任务,但是例如多属性标记训练数据的稀疏性等技术挑战,长期以来阻碍了解决方案的开发。 在最新的研究中,浙江大学侯廷军团队、中南大学曹东升团队以及碳硅智慧团队联合开发了一种分子优化工具 Prompt-MolOpt。