轨迹跟踪误差直降50%,清华汪玉团队强化学习策略秘籍搞定无人机

AIxiv专栏是AI在线发布学术、技术内容的栏目。 过去数年,AI在线AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。 如果您有优秀的工作想要分享,欢迎投稿或者联系报道。

AIxiv专栏是AI在线发布学术、技术内容的栏目。过去数年,AI在线AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected]

本文介绍了基于强化学习的无人机控制策略零样本泛化到真实世界的关键因素。作者来自于清华大学高能效计算实验室,通讯作者为清华大学汪玉教授和于超博士后,研究方向为强化学习和具身智能。

控制无人机执行敏捷、高机动性的行为是一项颇具挑战的任务。传统的控制方法,比如 PID 控制器和模型预测控制(MPC),在灵活性和效果上往往有所局限。而近年来,强化学习(RL)在机器人控制领域展现出了巨大的潜力。通过直接将观测映射为动作,强化学习能够减少对系统动力学模型的依赖。

然而,「Sim2Real」(从仿真到现实)的鸿沟却始终是强化学习应用于无人机控制的难点之一。如何实现无需额外微调的策略迁移,是研究者们追逐的目标。尽管有许多基于强化学习的控制方法被提出,但至今学界仍未就训练出鲁棒且可零微调部署的控制策略达成一致,比如:奖励函数应该如何设计才能让无人机飞得平稳?域随机化在无人机控制中到底该怎么用?

 

最近,清华大学的研究团队为我们带来了一个突破性的答案。他们详细研究了训练零微调部署的鲁棒 RL 策略所需的关键因素,并提出了一套集成五大技术、基于 PPO 的强化学习框架 SimpleFlight。这一框架在轨迹跟踪误差上比现有的 RL 基线方法降低了 50% 以上!如果你正为强化学习策略无法实际控制无人机而发愁,那么 SimpleFlight 能够帮助你训练出无需额外微调就能在真实环境中运行的鲁棒策略。

轨迹跟踪误差直降50%,清华汪玉团队强化学习策略秘籍搞定无人机

  • 论文标题:What Matters in Learning A Zero-Shot Sim-to-Real RL Policy for Quadrotor Control? A Comprehensive Study

  • 论文链接:https://arxiv.org/abs/2412.11764

  • 开源代码及模型项目网站:https://sites.google.com/view/simpleflight

实验效果一览

为了验证 SimpleFlight 的有效性,研究人员在开源的微型四旋翼无人机 Crazyflie 2.1 上进行了广泛的实验。

实验中,无人机的位置、速度和姿态信息由 OptiTrack 运动捕捉系统以 100Hz 的频率提供,并传输到离线计算机上进行策略解算。策略生成的 collective thrust and body rates( CTBR) 控制指令以 100Hz 的频率通过 2.4GHz 无线电发送到无人机。

研究人员使用了以下两种类型的轨迹作为基准轨迹:

  • 平滑轨迹:包括八字形和随机多项式轨迹八字形轨迹具有周期性,研究人员测试了三种速度:慢速 (15.0s 完成)、正常速度 (5.5s 完成) 和快速 (3.5s 完成)。随机多项式轨迹由多个随机生成的五次多项式段组成,每个段的持续时间在 1.00s 和 4.00s 之间随机选择。

  • 不可行轨迹:包括五角星和随机之字形轨迹五角星轨迹要求无人机以恒定速度依次访问五角星的五个顶点。研究人员测试了两种速度:慢速 (0.5m/s) 和快速 (1.0m/s)。随机之字形轨迹由多个随机选择的航点组成,航点的 x 和 y 坐标在 -1m 和 1m 之间分布,连续航点之间由直线连接,时间间隔在 1s 和 1.5s 之间随机选择。

轨迹跟踪误差直降50%,清华汪玉团队强化学习策略秘籍搞定无人机                              图 1:四种轨迹的可视化

策略的训练数据包括平滑随机五次多项式和不可行之字形轨迹。训练过程持续 15,000 个 epoch,训练完成后,将策略直接部署到 Crazyflie 无人机上进行测试,没有进行任何微调。值得注意的是,由于策略在不同随机种子下表现稳定,研究人员在 3 个随机种子中随机挑选了一个策略而没有选择表现最好的那个。

轨迹跟踪误差直降50%,清华汪玉团队强化学习策略秘籍搞定无人机                             表 1:SimpleFlight 与基线算法的表现对比

研究人员将 SimpleFlight 与两种 SOTA 的 RL 基线方法 (DATT [1] 和 Fly [2]) 进行了比较,如表 1 所示。结果表明,SimpleFlight 在所有基准轨迹上都取得了最佳性能,轨迹跟踪误差降低了 50% 以上,并且是唯一能够成功完成所有基准轨迹(包括平滑和不可行轨迹)的方法。图 2 是一些真机飞行的视频。

轨迹跟踪误差直降50%,清华汪玉团队强化学习策略秘籍搞定无人机

轨迹跟踪误差直降50%,清华汪玉团队强化学习策略秘籍搞定无人机                              图 2:SimpleFlight 在 Crazyflie 2.1 无人机上的实验效果

研究人员指出,这些对比的核心目的并非进行绝对的横向评价,而是为了表明:SimpleFlight 实现了目前所知的在 Crazyflie 2.1 上的最佳控制性能,尽管没有依赖任何新的算法改进或复杂的架构升级。SimpleFlight 的意义更在于作为一套关键训练因素的集合,它能够轻松集成到现有的四旋翼无人机控制方法中,从而帮助研究者和开发者进一步优化控制性能。

此外,研究人员还进行了额外实验,将 SimpleFlight 部署到一款由团队自制的 250mm 轴距四旋翼无人机上。这款无人机配备了 Nvidia Orin 处理器,进一步验证了 SimpleFlight 在不同硬件平台上的适应性与效果。自制无人机的飞行视频和结果已上传至项目官网,供感兴趣的同行参考。

SimpleFlight 的五大核心秘诀

那么,SimpleFlight 是如何做到的呢?研究人员主要是从优化输入空间设计、奖励设计和训练技术三方面来缩小模拟到现实的差距,并总结出了以下 5 大关键因素:

  1. 采用与未来一段参考轨迹的相对位姿误差、速度和旋转矩阵作为策略网络的输入,这使得策略可以进行长距离规划,并更好地处理具有急转弯的不可行轨迹。研究人员指出,在强化学习策略的学习中,采用旋转矩阵而不是四元数作为输入,更有利于神经网络的学习。

  2. 将时间向量添加到价值网络的输入。无人机的控制任务通常是随时间动态变化的,时间向量作为价值网络的额外输入,增强了价值网络对时间信息的感知,从而更准确地估计状态值。

  3. 采用 CTBR 指令作为策略输出动作,使用连续动作之间的差异的正则化作为平滑度奖励。在无人机控制中,不平滑的动作输出可能导致飞行过程中的不稳定,甚至出现震荡和意外偏离轨迹的情况。而现实中的无人机由于硬件特性和动态响应的限制,比仿真环境更容易受到这些不稳定动作的影响。研究人员比较了多种平滑度奖励方案,结果表明使用连续动作之间的差异的正则化作为平滑度奖励,可以获得最佳的跟踪性能,同时鼓励策略输出平滑的动作,避免在现实世界中产生不稳定的飞行行为。

  4. 使用系统辨识对关键动力学参数进行校准,并选择性地应用域随机化手段。研究人员通过系统辨识对关键动力学参数进行了精确校准,确保仿真模型能够尽可能接近真实无人机的动力学特性。然而,研究也发现,域随机化的应用需要极为谨慎。对于那些能够通过系统辨识达到合理精度的参数,过度引入域随机化可能会适得其反。这是因为不必要的随机化会显著增加强化学习的学习复杂度,导致性能下降。换句话说,域随机化并非 「越多越好」,需要通过合理选择哪些参数应用随机化。

  5. 在训练过程中使用较大的 batch size。在 SimpleFlight 的训练过程中,研究人员特别关注了 batch size 对策略性能的影响。他们通过实验发现,增大 batch size 尽管对仿真环境中的性能提升并不显著,但在真实无人机上的表现却得到了显著改善。这表明,大 batch size 在缩小模拟与现实之间的 Sim2Real Gap 方面,扮演了关键角色。这种现象背后的原因可能与强化学习的泛化能力有关。在大 batch size 的训练中,策略能够在更广泛的状态分布上进行学习,从而提升其应对真实环境中复杂情况的鲁棒性。这种改进不仅帮助策略更好地适应现实世界中的不确定性,还减少了从仿真到现实部署时可能出现的性能退化问题。

另外值得注意的是,SimpleFlight 框架集成在研究人员自主开发的高效无人机仿真平台 OmniDrones,该平台基于 NVIDIA 的 Isaac Sim 仿真环境搭建,允许用户在 GPU 并行模拟之上轻松设计和试验各种应用场景,可以实现每秒超过 10^5 步的仿真速度,极大地加速了强化学习策略的训练。

轨迹跟踪误差直降50%,清华汪玉团队强化学习策略秘籍搞定无人机                               图 4:OmniDrones 仿真平台示意图,来源:https://arxiv.org/abs/2309.12825

还等什么?赶快试试 SimpleFlight,把你的强化学习策略送上无人机吧!

Reference:

[1] Huang, K., Rana, R., Spitzer, A., Shi, G. and Boots, B., 2023. Datt: Deep adaptive trajectory tracking for quadrotor control. arXiv preprint arXiv:2310.09053.

[2] Eschmann, J., Albani, D. and Loianno, G., 2024. Learning to fly in seconds. IEEE Robotics and Automation Letters.

相关资讯

20分钟学会装配电路板!开源SERL框架精密操控成功率100%,速度三倍于人类

现在,机器人学会工厂精密操控任务了。近年来,机器人强化学习技术领域取得显著的进展,例如四足行走,抓取,灵巧操控等,但大多数局限于实验室展示阶段。将机器人强化学习技术广泛应用到实际生产环境仍面临众多挑战,这在一定程度上限制了其在真实场景的应用范围。强化学习技术在实际应用的过程中,任需克服包括奖励机制设定、环境重置、样本效率提升及动作安全性保障等多重复杂的问题。业内专家强调,解决强化学习技术实际落地的诸多难题,与算法本身的持续创新同等重要。面对这一挑战,来自加州大学伯克利、斯坦福大学、华盛顿大学以及谷歌的学者们共同开发

扩散模型如何构建新一代决策智能体?超越自回归,同时生成长序列规划轨迹

设想一下,当你站在房间内,准备向门口走去,你是通过自回归的方式逐步规划路径吗?实际上,你的路径是一次性整体生成的。近期的研究表明,采用扩散模型的规划模块能够同时生成长序列的轨迹规划,这更加符合人类的决策模式。此外,扩散模型在策略表征和数据合成方面也能为现有的决策智能算法提供更优的选择。来自上海交通大学的团队撰写的综述论文《Diffusion Models for Reinforcement Learning: A Survey》梳理了扩散模型在强化学习相关领域的应用。综述指出现有强化学习算法面临长序列规划误差累积、

准确率82.5%,设计多药理学化合物,加州大学开发新AI平台设计未来抗癌药物

编辑 | 萝卜皮多药理学药物(可以同时抑制多种蛋白质的化合物)在治疗癌症等重大疾病方面有着重要应用,但非常难以设计。为了应对这一挑战,加州大学圣地亚哥分校的研究人员开发了 POLYGON,这是一种基于生成强化学习的多药理学方法,可以模拟药物发现最早阶段所涉及的耗时化学过程。POLYGON 嵌入化学空间并对其进行迭代采样,从而生成新的分子结构;这些药物的回报是预期能够抑制两个蛋白质靶标中的每一个,并且具有药物相似性和易于合成的特点。在超过 100,000 种化合物的结合数据中,POLYGON 能够正确识别多药理学相互