关键点检测项目代码开源了!

作者:闫永强,算法工程师,Datawhale成员 本文通过自建手势数据集,利用YOLOv5s检测,然后通过开源数据集训练squeezenet进行手部关键点预测,最后通过指间的夹角算法来判断具体的手势,并显示出来。文章第四部分为用C 实现整体的ncnn推理(代码较长,可先马后看)一、YOLOV5训练手部检测训练及部署思路类似表情识别,需要将handpose数据集标签改成一类,只检测手部,简化流程,更易上手。此部分数据集来源格物钛  ,具体的效果如图:本教程所用训练环境:系统环境:Ubuntu16.04cuda版本:

作者:闫永强,算法工程师,Datawhale成员 

本文通过自建手势数据集,利用YOLOv5s检测,然后通过开源数据集训练squeezenet进行手部关键点预测,最后通过指间的夹角算法来判断具体的手势,并显示出来。文章第四部分为用C++实现整体的ncnn推理(代码较长,可先马后看)

关键点检测项目代码开源了!

一、YOLOV5训练手部检测

训练及部署思路类似表情识别,需要将handpose数据集标签改成一类,只检测手部,简化流程,更易上手。

此部分数据集来源格物钛  https://gas.graviti.cn/dataset/datawhale/HandPose,具体的效果如图:

关键点检测项目代码开源了!

本教程所用训练环境:

系统环境:Ubuntu16.04

cuda版本:10.2

cudnn版本:7.6.5

pytorch版本:1.6.0

python版本:3.8

部署环境:

编译器:vs2015

依赖库:opencv   ncnn

外设:普通USB摄像头

二、手部关节点检测

1、依赖环境

和YOLOV5训练手部检测一致。

2、检测数据集准备

该数据集包括网络图片以及数据集<Large-scale Multiview 3D Hand Pose Dataset> 筛选动作重复度低的图片,进行制作大概有5w张数据样本。其中<Large-scale Multiview 3D Hand Pose Dataset>数据集的官网地址:http://www.rovit.ua.es/dataset/mhpdataset/,其中标注文件示例如图2所示

关键点检测项目代码开源了!

制作好可以直接训练的数据集放在了开源数据平台格物钛:https://gas.graviti.com/dataset/datawhale/HandPoseKeyPoints

3、数据集在线使用

步骤1:安装格物钛平台SDK

pip install tensorbay

步骤2:  数据预处理

要使用已经处理好可以直接训练的数据集,步骤如下:

a. 打开本文对应数据集链接 https://gas.graviti.cn/dataset/datawhale/HandPose,在数据集页面,fork数据集到自己账户下;

b. 点击网页上方开发者工具 --> AccessKey --> 新建一个AccessKey --> 复制这个Key:KEY = 'Acces...........'

关键点检测项目代码开源了!

我们可以在不下载数据集的情况下,通过格物钛进行数据预处理,并将结果保存在本地。下面以使用HandPose数据集为例,使用HandPoseKeyPoints数据集操作同HandPose操作一样。

数据集开源地址:

https://gas.graviti.com/dataset/datawhale/HandPoseKeyPoints

完整项目代码:

https://github.com/datawhalechina/HandPoseKeyPoints

import numpy as np
from PIL import Image
from tensorbay import GAS
from tensorbay.dataset import Dataset

def read_gas_image(data):
    with data.open() as fp:
        image = Image.open(fp)
        image.load()
    return np.array(image)
# Authorize a GAS client.
gas = GAS('填入你的AccessKey')
# Get a dataset.
dataset = Dataset("HandPose", gas)dataset.enable_cache("data")
# List dataset segments.
segments = dataset.keys()

# Get a segment by name
segment = dataset["train"]
for data in segment:
    # 图片数据
    image = read_gas_image(data)
    # 标签数据
    # Use the data as you like.
    for label_box2d in data.label.box2d:
        xmin = label_box2d.xmin
        ymin = label_box2d.ymin
        xmax = label_box2d.xmax
        ymax = label_box2d.ymax
        box2d_category = label_box2d.category
    break

数据集页面可视化效果: 

关键点检测项目代码开源了!

#数据集划分
print(segments)
#  ("train",'val')

print(len(dataset["train"]), "images in train dataset")
print(len(dataset["val"]), "images in valid dataset")

# 1306 images in train dataset
# 14 images in valid datas

4、关节点检测原理

关节点检测pipeline流程是:

1)输入图片对应手部的42个关节点坐标,

2)整个网络的backbone可以是任何分类网络,我这里采用的是squeezenet,然后损失函数是wingloss。

3)整个过程就是输入原图经过squeezenet网路计算出42个坐标值,然后通过wingloss进行回归计算更新权重,最后达到指定阈值,得出最终模型。

5、手部关节点训练

手部关节点算法采用开源代码参考地址:https://gitcode.net/EricLee/handpose_x

1)预训练模型

预训练模型在上述链接中有相应的网盘链接,可以直接下载。如果不想用预训练模型,可以直接从原始分类网络的原始权重开始训练。

2)模型的训练

以下是训练网络指定参数解释,其意义直接看图中注释就可以了。

关键点检测项目代码开源了!

训练只需要运行训练命令,指定自己想要指定的参数就可以跑起来了,如下图:

关键点检测项目代码开源了!

6、手部关节点模型转换

1)安装依赖库

pip install onnx coremltools onnx-simplifi

2)导出onnx模型 

python model2onnx.py --model_path squeezenet1_1-size-256-loss-wing_loss-model_epoch-2999.pth --model squeezenet1

会出现如下图所示

关键点检测项目代码开源了!

其中model2onnx.py文件是在上述链接工程目录下的。此时当前文件夹下会出现一个相应的onnx模型export。

3)用onnx-simplifer简化模型

为什么要简化?

因为在训练完深度学习的pytorch或者tensorflow模型后,有时候需要把模型转成onnx,但是很多时候,很多节点比如cast节点,Identity这些节点可能都不需要,需要进行简化,这样会方便把模型转成ncnn mnn等端侧部署模型格式。

python -m onnxsim squeezenet1_1_size-256.onnx squeezenet1_1_sim.on

会出现下图:

关键点检测项目代码开源了!

上述过程完成后就生成了简化版本的模型squeezenet1_1_sim.onnx。

4)把检测模型转换成ncnn模型

可以直接利用网页在线版本转换模型,地址:https://convertmodel.com/  页面如图:

关键点检测项目代码开源了!

选择目标格式ncnn,选择输入格式onnx,点击选择,选择本地的简化版本的模型,然后选择转换,可以看到转换成功,下面两个就是转换成功的模型文件,如图。

关键点检测项目代码开源了!

三、利用关节点手势识别算法

通过对检测到的手部关节点之间的角度计算,可以实现简单的手势识别。例如:计算大拇指向量0-2和3-4之间的角度,它们之间的角度大于某一个角度阈值(经验值)定义为弯曲,小于某一个阈值(经验值)为伸直。具体效果如下面三张图。

关键点检测项目代码开源了!

关键点检测项目代码开源了!

关键点检测项目代码开源了!

四、工程推理部署整体实现

此关节点手势识别的整体过程总结:首先是利用目标检测模型检测到手的位置,然后利用手部关节点检测模型,检测手部关节点具体位置,绘制关节点,以及关节点之间的连线。再利用简单的向量之间角度进行手势识别。

整体的ncnn推理C++ 代码实现:

#include <string>
#include <vector>
#include "iostream"  
#include<cmath>

// ncnn
#include "ncnn/layer.h"
#include "ncnn/net.h"
#include "ncnn/benchmark.h"

#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <opencv2/imgproc.hpp>
#include "opencv2/opencv.hpp"  

using namespace std;
using namespace cv;

static ncnn::UnlockedPoolAllocator g_blob_pool_allocator;
static ncnn::PoolAllocator g_workspace_pool_allocator;

static ncnn::Net yolov5;
static ncnn::Net hand_keyPoints;

class YoloV5Focus : public ncnn::Layer
{
public:
 YoloV5Focus()
 {
  one_blob_only = true;
 }

 virtual int forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const
 {
  int w = bottom_blob.w;
  int h = bottom_blob.h;
  int channels = bottom_blob.c;

  int outw = w / 2;
  int outh = h / 2;
  int outc = channels * 4;

  top_blob.create(outw, outh, outc, 4u, 1, opt.blob_allocator);
  if (top_blob.empty())
   return -100;
#pragma omp parallel for num_threads(opt.num_threads)
  for (int p = 0; p < outc; p++)
  {
   const float* ptr = bottom_blob.channel(p % channels).row((p / channels) % 2) + ((p / channels) / 2);
   float* outptr = top_blob.channel(p);

   for (int i = 0; i < outh; i++)
   {
    for (int j = 0; j < outw; j++)
    {
     *outptr = *ptr;

     outptr += 1;
     ptr += 2;
    }

    ptr += w;
   }
  }
  return 0;
 }
};

DEFINE_LAYER_CREATOR(YoloV5Focus)
struct Object
{
 float x;
 float y;
 float w;
 float h;
 int label;
 float prob;
};

static inline float intersection_area(const Object& a, const Object& b)
{
 if (a.x > b.x + b.w || a.x + a.w < b.x || a.y > b.y + b.h || a.y + a.h < b.y)
 {
  // no intersection
  return 0.f;
 }

 float inter_width = std::min(a.x + a.w, b.x + b.w) - std::max(a.x, b.x);
 float inter_height = std::min(a.y + a.h, b.y + b.h) - std::max(a.y, b.y);
 return inter_width * inter_height;
}

static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right)
{
 int i = left;
 int j = right;
 float p = faceobjects[(left + right) / 2].prob;
 while (i <= j)
 {
  while (faceobjects[i].prob > p)
   i++;

  while (faceobjects[j].prob < p)
   j--;

  if (i <= j)
        {
   std::swap(faceobjects[i], faceobjects[j]);

   i++;
   j--;
  }
 }

#pragma omp parallel sections
 {
#pragma omp section
  {
   if (left < j) qsort_descent_inplace(faceobjects, left, j);
  }
#pragma omp section
  {
   if (i < right) qsort_descent_inplace(faceobjects, i, right);
  }
 }
}

static void qsort_descent_inplace(std::vector<Object>& faceobjects)
{
 if (faceobjects.empty())
  return;

 qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1);
}

static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold)
{
 picked.clear();

 const int n = faceobjects.size();

 std::vector<float> areas(n);
 for (int i = 0; i < n; i++)
 {
  areas[i] = faceobjects[i].w * faceobjects[i].h;
 }
 for (int i = 0; i < n; i++)
 {
  const Object& a = faceobjects[i];

  int keep = 1;
  for (int j = 0; j < (int)picked.size(); j++)
  {
   const Object& b = faceobjects[picked[j]];
   float inter_area = intersection_area(a, b);
   float union_area = areas[i] + areas[picked[j]] - inter_area;
   // float IoU = inter_area / union_area
   if (inter_area / union_area > nms_threshold)
    keep = 0;
  }

  if (keep)
   picked.push_back(i);
 }
}

static inline float sigmoid(float x)
{
 return static_cast<float>(1.f / (1.f + exp(-x)));
}

static void generate_proposals(const ncnn::Mat& anchors, int stride, const ncnn::Mat& in_pad, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects)
{
 const int num_grid = feat_blob.h;

 int num_grid_x;
 int num_grid_y;
 if (in_pad.w > in_pad.h)
 {
  num_grid_x = in_pad.w / stride;
  num_grid_y = num_grid / num_grid_x;
 }
 else
 {
  num_grid_y = in_pad.h / stride;
  num_grid_x = num_grid / num_grid_y;
 }

 const int num_class = feat_blob.w - 5;

 const int num_anchors = anchors.w / 2;
 for (int q = 0; q < num_anchors; q++)
 {
  const float anchor_w = anchors[q * 2];
  const float anchor_h = anchors[q * 2 + 1];

  const ncnn::Mat feat = feat_blob.channel(q);

  for (int i = 0; i < num_grid_y; i++)
  {
   for (int j = 0; j < num_grid_x; j++)
   {
    const float* featptr = feat.row(i * num_grid_x + j);

    // find class index with max class score
    int class_index = 0;
    float class_score = -FLT_MAX;
    for (int k = 0; k < num_class; k++)
    {
     float score = featptr[5 + k];
     if (score > class_score)
     {
      class_index = k;
      class_score = score;
     }
    }

    float box_score = featptr[4];

    float confidence = sigmoid(box_score) * sigmoid(class_score);
                
    if (confidence >= prob_threshold)
    {
     float dx = sigmoid(featptr[0]);
     float dy = sigmoid(featptr[1]);
     float dw = sigmoid(featptr[2]);
     float dh = sigmoid(featptr[3]);

     float pb_cx = (dx * 2.f - 0.5f + j) * stride;
     float pb_cy = (dy * 2.f - 0.5f + i) * stride;
     float pb_w = pow(dw * 2.f, 2) * anchor_w;
     float pb_h = pow(dh * 2.f, 2) * anchor_h;

     float x0 = pb_cx - pb_w * 0.5f;
     float y0 = pb_cy - pb_h * 0.5f;
     float x1 = pb_cx + pb_w * 0.5f;
     float y1 = pb_cy + pb_h * 0.5f;
     Object obj;
     obj.x = x0;
     obj.y = y0;
     obj.w = x1 - x0;
     obj.h = y1 - y0;
     obj.label = class_index;
     obj.prob = confidence;

     objects.push_back(obj);
    }
   }
  }
 }
}

extern "C" {

 void release()
{
  fprintf(stderr, "YoloV5Ncnn finished!");
 }

 int init_handKeyPoint() {
  ncnn::Option opt;
  opt.lightmode = true;
  opt.num_threads = 4;
  opt.blob_allocator = &g_blob_pool_allocator;
  opt.workspace_allocator = &g_workspace_pool_allocator;
  opt.use_packing_layout = true;
  fprintf(stderr, "handKeyPoint init!\n");
  hand_keyPoints.opt = opt;
  int ret_hand = hand_keyPoints.load_param("squeezenet1_1.param");  //squeezenet1_1   resnet_50
  if (ret_hand != 0) {
   std::cout << "ret_hand:" << ret_hand << std::endl;
  }
  ret_hand = hand_keyPoints.load_model("squeezenet1_1.bin");  //squeezenet1_1   resnet_50
  if (ret_hand != 0) {
   std::cout << "ret_hand:" << ret_hand << std::endl;
  }

  return 0;
 }
 int init()
 {
  fprintf(stderr, "YoloV5sNcnn init!\n");
  ncnn::Option opt;
  opt.lightmode = true;
  opt.num_threads = 4;
  opt.blob_allocator = &g_blob_pool_allocator;
  opt.workspace_allocator = &g_workspace_pool_allocator;
  opt.use_packing_layout = true;
  yolov5.opt = opt;

  yolov5.register_custom_layer("YoloV5Focus", YoloV5Focus_layer_creator);

  // init param
  {
   int ret = yolov5.load_param("yolov5s.param");  
   if (ret != 0)
   {
    std::cout << "ret= " << ret << std::endl;
    fprintf(stderr, "YoloV5Ncnn, load_param failed");
    return -301;
   }
  }

  // init bin
  {
   int ret = yolov5.load_model("yolov5s.bin");  
   if (ret != 0)
   {
    fprintf(stderr, "YoloV5Ncnn, load_model failed");
    return -301;
   }
  }

  return 0;
 }
 int detect(cv::Mat img, std::vector<Object> &objects)
 {

  double start_time = ncnn::get_current_time();
  const int target_size = 320;

  const int width = img.cols;
  const int height = img.rows;
  int w = img.cols;
  int h = img.rows;
  float scale = 1.f;
  if (w > h)
  {
   scale = (float)target_size / w;
   w = target_size;
   h = h * scale;
  }
  else
  {
   scale = (float)target_size / h;
   h = target_size;
   w = w * scale;
  }
  cv::resize(img, img, cv::Size(w, h));
  ncnn::Mat in = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR2RGB, w, h);
  int wpad = (w + 31) / 32 * 32 - w;
  int hpad = (h + 31) / 32 * 32 - h;
  ncnn::Mat in_pad;
  ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);
        
  {
   const float prob_threshold = 0.4f;
   const float nms_threshold = 0.51f;

   const float norm_vals[3] = { 1 / 255.f, 1 / 255.f, 1 / 255.f };
   in_pad.substract_mean_normalize(0, norm_vals);

   ncnn::Extractor ex = yolov5.create_extractor();
      ex.input("images", in_pad);
   std::vector<Object> proposals;
   {
    ncnn::Mat out;
    ex.extract("output", out);
    ncnn::Mat anchors(6);
    anchors[0] = 10.f;
    anchors[1] = 13.f;
    anchors[2] = 16.f;
    anchors[3] = 30.f;
    anchors[4] = 33.f;
    anchors[5] = 23.f;
    std::vector<Object> objects8;
    generate_proposals(anchors, 8, in_pad, out, prob_threshold, objects8);

    proposals.insert(proposals.end(), objects8.begin(), objects8.end());
   }
   
            {
    ncnn::Mat out;
    ex.extract("771", out);

    ncnn::Mat anchors(6);
    anchors[0] = 30.f;
    anchors[1] = 61.f;
    anchors[2] = 62.f;
    anchors[3] = 45.f;
    anchors[4] = 59.f;
    anchors[5] = 119.f;
                
    std::vector<Object> objects16;
    generate_proposals(anchors, 16, in_pad, out, prob_threshold, objects16);

    proposals.insert(proposals.end(), objects16.begin(), objects16.end());
   }
   {
    ncnn::Mat out;
    ex.extract("791", out);
    ncnn::Mat anchors(6);
    anchors[0] = 116.f;
    anchors[1] = 90.f;
    anchors[2] = 156.f;
    anchors[3] = 198.f;
    anchors[4] = 373.f;
    anchors[5] = 326.f;
    std::vector<Object> objects32;
    generate_proposals(anchors, 32, in_pad, out, prob_threshold, objects32);

    proposals.insert(proposals.end(), objects32.begin(), objects32.end());
   }

   // sort all proposals by score from highest to lowest
   qsort_descent_inplace(proposals);
   std::vector<int> picked;
   nms_sorted_bboxes(proposals, picked, nms_threshold);

   int count = picked.size();
   objects.resize(count);
   for (int i = 0; i < count; i++)
   {
    objects[i] = proposals[picked[i]];
    float x0 = (objects[i].x - (wpad / 2)) / scale;
    float y0 = (objects[i].y - (hpad / 2)) / scale;
    float x1 = (objects[i].x + objects[i].w - (wpad / 2)) / scale;
    float y1 = (objects[i].y + objects[i].h - (hpad / 2)) / scale;

    // clip
    x0 = std::max(std::min(x0, (float)(width - 1)), 0.f);
    y0 = std::max(std::min(y0, (float)(height - 1)), 0.f);
    x1 = std::max(std::min(x1, (float)(width - 1)), 0.f);
    y1 = std::max(std::min(y1, (float)(height - 1)), 0.f);
    objects[i].x = x0;
    objects[i].y = y0;
    objects[i].w = x1;
    objects[i].h = y1;
   }
  }

  return 0;
 }
}

static const char* class_names[] = {"hand"};

void draw_face_box(cv::Mat& bgr, std::vector<Object> object)
{
 for (int i = 0; i < object.size(); i++)
 {
  const auto obj = object[i];
  cv::rectangle(bgr, cv::Point(obj.x, obj.y), cv::Point(obj.w, obj.h), cv::Scalar(0, 255, 0), 3, 8, 0);
  std::cout << "label:" << class_names[obj.label] << std::endl;
  string emoji_path = "emoji\\" + string(class_names[obj.label]) + ".png";
  cv::Mat logo = cv::imread(emoji_path);
  if (logo.empty()) {
   std::cout << "imread logo failed!!!" << std::endl;
   return;
  }
  resize(logo, logo, cv::Size(80, 80));
  cv::Mat imageROI = bgr(cv::Range(obj.x, obj.x + logo.rows), cv::Range(obj.y, obj.y + logo.cols));
  logo.copyTo(imageROI);
 }

}

static int detect_resnet(const cv::Mat& bgr,std::vector<float>& output) {
 ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data,ncnn::Mat::PIXEL_RGB,bgr.cols,bgr.rows,256,256);

 const float mean_vals[3] = { 104.f,117.f,123.f };//
 const float norm_vals[3] = { 1/255.f, 1/255.f, 1/255.f };//1/255.f
 in.substract_mean_normalize(mean_vals, norm_vals);  //0  mean_vals, norm_vals

 ncnn::Extractor ex = hand_keyPoints.create_extractor();

 ex.input("input", in);
 ncnn::Mat out;
 ex.extract("output",out);
 
 std::cout << "out.w:" << out.w <<" out.h: "<< out.h <<std::endl;
 output.resize(out.w);
 for (int i = 0; i < out.w; i++) {
  output[i] = out[i];
 }

 return 0;
}
float vector_2d_angle(cv::Point p1,cv::Point p2) {
 //求解二维向量的角度
 float angle = 0.0;
 try {
  float radian_value = acos((p1.x*p2.x+p1.y*p2.y)/(sqrt(p1.x*p1.x+p1.y*p1.y)*sqrt(p2.x*p2.x+p2.y*p2.y)));
  angle = 180*radian_value/3.1415;
 }catch(...){
  angle = 65535.;
 }
 if (angle > 180.) {
  angle = 65535.;
 }

 return angle;
}

std::vector<float> hand_angle(std::vector<int>& hand_x,std::vector<int>& hand_y) {
 //获取对应手相关向量的二维角度,根据角度确定手势


 float angle = 0.0;
 std::vector<float> angle_list;
 //------------------- thumb 大拇指角度
 angle = vector_2d_angle(cv::Point((hand_x[0]-hand_x[2]),(hand_y[0]-hand_y[2])),cv::Point((hand_x[3]-hand_x[4]),(hand_y[3]-hand_y[4])));
 angle_list.push_back(angle);

 //--------------------index 食指角度
 angle = vector_2d_angle(cv::Point((hand_x[0] - hand_x[6]), (hand_y[0] - hand_y[6])), cv::Point((hand_x[7] - hand_x[8]), (hand_y[7] - hand_y[8])));
 angle_list.push_back(angle);

 //---------------------middle  中指角度
 angle = vector_2d_angle(cv::Point((hand_x[0] - hand_x[10]), (hand_y[0] - hand_y[10])), cv::Point((hand_x[11] - hand_x[12]), (hand_y[11] - hand_y[12])));
 angle_list.push_back(angle);

 //----------------------ring 无名指角度
 angle = vector_2d_angle(cv::Point((hand_x[0] - hand_x[14]), (hand_y[0] - hand_y[14])), cv::Point((hand_x[15] - hand_x[16]), (hand_y[15] - hand_y[16])));
 angle_list.push_back(angle);

 //-----------------------pink 小拇指角度
 angle = vector_2d_angle(cv::Point((hand_x[0] - hand_x[18]), (hand_y[0] - hand_y[18])), cv::Point((hand_x[19] - hand_x[20]), (hand_y[19] - hand_y[20])));
 angle_list.push_back(angle);
 return angle_list;
}

string h_gestrue(std::vector<float>& angle_lists) {
 //二维约束的方式定义手势
 //fist five gun love one six three thumbup yeah
 float thr_angle = 65.;
 float thr_angle_thumb = 53.;
 float thr_angle_s = 49.;
 string gesture_str;
 bool flag = false;
 for (int i = 0; i < angle_lists.size(); i++) {
  if (abs(65535 - int(angle_lists[i])) > 0) {
   flag = true;   //进入手势判断标识
  }
 }
 std::cout << "flag:" << flag << std::endl;
 if (flag) {
  if (angle_lists[0] > thr_angle_thumb && angle_lists[1] > thr_angle 
   && angle_lists[2] > thr_angle && angle_lists[3] > thr_angle 
   && angle_lists[4] > thr_angle) {
   gesture_str = "fist";
  }
  else if (angle_lists[0] < thr_angle_s && angle_lists[1] < thr_angle_s
   && angle_lists[2] < thr_angle_s && angle_lists[3] < thr_angle_s
   && angle_lists[4] < thr_angle_s) {
   gesture_str = "five";
  }
  else if(angle_lists[0] < thr_angle_s && angle_lists[1] < thr_angle_s
   && angle_lists[2] > thr_angle && angle_lists[3] > thr_angle
   && angle_lists[4] > thr_angle){
   gesture_str = "gun";
  }
  else if (angle_lists[0] < thr_angle_s && angle_lists[1] < thr_angle_s
   && angle_lists[2] > thr_angle && angle_lists[3] > thr_angle
   && angle_lists[4] < thr_angle_s) {
   gesture_str = "love";
  }
  else if (angle_lists[0] < 5 && angle_lists[1] < thr_angle_s
   && angle_lists[2] > thr_angle && angle_lists[3] > thr_angle
   && angle_lists[4] > thr_angle) {
   gesture_str = "one";
  }
  else if (angle_lists[0] < thr_angle_s && angle_lists[1] > thr_angle
   && angle_lists[2] > thr_angle && angle_lists[3] > thr_angle
   && angle_lists[4] < thr_angle_s) {
   gesture_str = "six";
  }
  else if (angle_lists[0] > thr_angle_thumb && angle_lists[1] < thr_angle_s
   && angle_lists[2] < thr_angle_s && angle_lists[3] < thr_angle_s
   && angle_lists[4] > thr_angle) {
   gesture_str = "three";
  }
  else if (angle_lists[0] < thr_angle_s && angle_lists[1] > thr_angle
   && angle_lists[2] > thr_angle && angle_lists[3] > thr_angle
   && angle_lists[4] > thr_angle) {
   gesture_str = "thumbUp";
  }
  else if (angle_lists[0] > thr_angle_thumb && angle_lists[1] < thr_angle_s
   && angle_lists[2] < thr_angle_s && angle_lists[3] > thr_angle
   && angle_lists[4] > thr_angle) {
   gesture_str = "two";
  }
 
 }
 return gesture_str;
}

int main()
{
 Mat frame;
 VideoCapture capture(0);
 init();
 init_handKeyPoint();
 while (true)
 {
  capture >> frame;            
  if (!frame.empty()) {          
   std::vector<Object> objects;
   detect(frame, objects);

   std::vector<float> hand_output;
   for (int j = 0; j < objects.size(); ++j) {
    cv::Mat handRoi;
    int x, y, w, h;
    try {
     x = (int)objects[j].x < 0 ? 0 : (int)objects[j].x;
     y = (int)objects[j].y < 0 ? 0 : (int)objects[j].y;
     w = (int)objects[j].w < 0 ? 0 : (int)objects[j].w;
     h = (int)objects[j].h < 0 ? 0 : (int)objects[j].h;

     if (w > frame.cols){
      w = frame.cols;
     }
     if (h > frame.rows) {
      h = frame.rows;
     }
                
    }
    catch (cv::Exception e) {
        
    }

    //把手区域向外扩30个像素
    x = max(0, x - 30);
    y = max(0, y - 30);
    int w_ = min(w - x + 30, 640);
    int h_ = min(h - y + 30, 480);
    cv::Rect roi(x,y,w_,h_);
    handRoi = frame(roi);
    cv::resize(handRoi,handRoi,cv::Size(256,256));
    //detect_resnet(handRoi, hand_output);
    detect_resnet(handRoi, hand_output);

    std::vector<float> angle_lists;
    string gesture_string;
    std::vector<int> hand_points_x;  //
    std::vector<int> hand_points_y;

    for (int k = 0; k < hand_output.size()/2; k++) {
     int x = int(hand_output[k * 2 + 0] * handRoi.cols);//+int(roi.x)-1;
     int y = int(hand_output[k * 2 + 1] * handRoi.rows);// +int(roi.y) - 1;

     //x1 = x1 < 0 ? abs(x1) : x1;
     //x2 = x2 < 0 ? abs(x2) : x2;
     hand_points_x.push_back(x);
     hand_points_y.push_back(y);
     std::cout << "x1: " << x << " x2: " << y << std::endl;
     cv::circle(handRoi, cv::Point(x,y), 3, (0, 255, 0), 3);
     cv::circle(handRoi, cv::Point(x,y), 3, (0, 255, 0), 3);
                    
    }
                
    cv::line(handRoi, cv::Point(hand_points_x[0], hand_points_y[0]), cv::Point(hand_points_x[1], hand_points_y[1]), cv::Scalar(255, 0, 0), 3);
    cv::line(handRoi, cv::Point(hand_points_x[1], hand_points_y[1]), cv::Point(hand_points_x[2], hand_points_y[2]), cv::Scalar(255, 0, 0), 3);
    cv::line(handRoi, cv::Point(hand_points_x[2], hand_points_y[2]), cv::Point(hand_points_x[3], hand_points_y[3]), cv::Scalar(255, 0, 0), 3);
                
    cv::line(handRoi, cv::Point(hand_points_x[3], hand_points_y[3]), cv::Point(hand_points_x[4], hand_points_y[4]), cv::Scalar(255, 0, 0), 3);

    cv::line(handRoi, cv::Point(hand_points_x[0], hand_points_y[0]), cv::Point(hand_points_x[5], hand_points_y[5]), cv::Scalar(0, 255, 0), 3);
    cv::line(handRoi, cv::Point(hand_points_x[5], hand_points_y[5]), cv::Point(hand_points_x[6], hand_points_y[6]), cv::Scalar(0, 255, 0), 3);
    cv::line(handRoi, cv::Point(hand_points_x[6], hand_points_y[6]), cv::Point(hand_points_x[7], hand_points_y[7]), cv::Scalar(0, 255, 0), 3);
    cv::line(handRoi, cv::Point(hand_points_x[7], hand_points_y[7]), cv::Point(hand_points_x[8], hand_points_y[8]), cv::Scalar(0, 255, 0), 3);

    cv::line(handRoi, cv::Point(hand_points_x[0], hand_points_y[0]), cv::Point(hand_points_x[9], hand_points_y[9]), cv::Scalar(0, 0, 255), 3);
    cv::line(handRoi, cv::Point(hand_points_x[9], hand_points_y[9]), cv::Point(hand_points_x[10], hand_points_y[10]), cv::Scalar(0, 0, 255), 3);
    cv::line(handRoi, cv::Point(hand_points_x[10], hand_points_y[10]), cv::Point(hand_points_x[11], hand_points_y[11]), cv::Scalar(0, 0, 255), 3);
    cv::line(handRoi, cv::Point(hand_points_x[11], hand_points_y[11]), cv::Point(hand_points_x[12], hand_points_y[12]), cv::Scalar(0, 0, 255), 3);

          cv::line(handRoi, cv::Point(hand_points_x[0], hand_points_y[0]), cv::Point(hand_points_x[13], hand_points_y[13]), cv::Scalar(255, 0, 0), 3);
    cv::line(handRoi, cv::Point(hand_points_x[13], hand_points_y[13]), cv::Point(hand_points_x[14], hand_points_y[14]), cv::Scalar(255, 0, 0), 3);
    cv::line(handRoi, cv::Point(hand_points_x[14], hand_points_y[14]), cv::Point(hand_points_x[15], hand_points_y[15]), cv::Scalar(255, 0, 0), 3);
    cv::line(handRoi, cv::Point(hand_points_x[15], hand_points_y[15]), cv::Point(hand_points_x[16], hand_points_y[16]), cv::Scalar(255, 0, 0), 3);

    cv::line(handRoi, cv::Point(hand_points_x[0], hand_points_y[0]), cv::Point(hand_points_x[17], hand_points_y[17]), cv::Scalar(0, 255, 0), 3);
    cv::line(handRoi, cv::Point(hand_points_x[17], hand_points_y[17]), cv::Point(hand_points_x[18], hand_points_y[18]), cv::Scalar(0, 255, 0), 3);
                
    cv::line(handRoi, cv::Point(hand_points_x[18], hand_points_y[18]), cv::Point(hand_points_x[19], hand_points_y[19]), cv::Scalar(0, 255, 0), 3);
    cv::line(handRoi, cv::Point(hand_points_x[19], hand_points_y[19]), cv::Point(hand_points_x[20], hand_points_y[20]), cv::Scalar(0, 255, 0), 3);
                
    angle_lists =  hand_angle(hand_points_x, hand_points_y);
    gesture_string = h_gestrue(angle_lists);

    std::cout << "getsture_string:" << gesture_string << std::endl;
    cv::putText(handRoi,gesture_string,cv::Point(30,30),cv::FONT_HERSHEY_COMPLEX,1, cv::Scalar(0, 255, 255), 1, 1, 0);
    cv::imshow("handRoi", handRoi);
    cv::waitKey(10);
    angle_lists.clear();
    hand_points_x.clear();
    hand_points_y.clear();

   }
  }
  if (cv::waitKey(20) == 'q')    
   break;
 }

 capture.release();     

 return 0;
}             

更多信息请访问格物钛官网

相关资讯

HANDS@ECCV24 手部研讨会和挑战赛,诚邀投稿和参与竞赛

简介第八届HANDS将在ECCV24(9月30日下午,米兰)举办,包含研讨会和挑战赛。HANDS将为相关手部研究人员和从业者提供一个分享工作和讨论潜在合作的平台。过去7届HANDS也取得了极大的成功。本文档属于翻译,信息以官网为准。HANDS@ECCV24 主页::研讨会专注于手部相关方向,将邀请手部相关领域的专家做前沿报告。特别的,我们诚邀相关长文投稿。手部挑战赛:挑战赛基于最新的手部大数据集AssemblyHands、ARCTIC、OakInk2和UmeTrack,组织多个赛道,希望推动相关算法的发展。论文投稿

百分点认知智能实验室:基于不完全标注样本集的信息抽取实践

编者按信息抽取是从文本数据中抽取特定信息的一种技术,命名实体识别(Named Entity Recognition, NER)是信息抽取的基础任务之一,其目标是抽取文本中具有基本语义的实体单元,在知识图谱构建、信息抽取、信息检索、机器翻译、智能问答等系统中都有广泛应用。基于监督学习的NER系统通常需要大规模的细粒度、高精度标注数据集,一旦数据标注质量下降,模型的表现也会急剧下降。利用不完全标注的数据进行NER系统的建立,越来越受到专家学者们的关注。第九届国际自然语言处理与中文计算会议(NLPCC 2020)针对此业

5 个章节、25 条规范,全方位 Get 数据集选择与创建的「百科全书」

内容一览:如果你正在学习如何创建或选择一个合适的数据集,那么这篇文章会给你一些实用的建议,帮助你在选择和创建数据集时做出明智的决策。 关键词:机器学习 数据集