谷歌请印度标注员给Reddit评论数据集打标签,错误率高达30%?

去年,谷歌发布了 GoEmotions 数据集,该数据集包含 58K 人工标注的 Reddit 评论,其中涉及 27 种情绪。

谷歌请印度标注员给Reddit评论数据集打标签,错误率高达30%?

但一位名叫 Edwin Chen 的机器学习工程师却在使用该数据集的时候,偶然发现了一些令人哭笑不得的错误。

他们本来尝试自己在 GoEmotions 数据集上训练模型,注意到似乎存在一些深层的质量问题。于是他们随机抽取了 1000 条评论,在其中 308 条中发现了严重错误

这里举一些有代表性的例子:

aggressively tells friend I love them—— 被标记为「愤怒」

Yay, cold McDonald's. My favorite.—— 被标记为「喜爱」

Hard to be sad these days when I got this guy with me—— 被标记为「悲伤」

Nobody has the money to. What a joke—— 被标记为「愉悦」

……

光是从抽取的评论中,他们就统计到了 25 种被错误标记的情绪。

在人工智能领域,数据标注是一项非常基础,但也非常关键的工作。好的数据对于训练模型至关重要,当数据面临如此离谱的错误时,又该怎么训练模型并评估模型的性能呢?

Edwin Chen 最后发问:「我们真的可以相信谷歌能够创造出公正的现实世界人工智能吗?」

所以,是什么导致了这些问题?

有人说:「有没有可能,他们没请人工标注员,或者请的人工标注员并未掌握流利的英语?」

谷歌请印度标注员给Reddit评论数据集打标签,错误率高达30%?

据了解,GoEmotions 数据集的标注还是有人工参与的,只不过这些标注员是「以英语为母语的印度人」。

在论文的第 3.3 节中,有这么一段话:「我们给每个样本分配了三个评估者。对于那些评估者没有达成一致的样本,我们分配了两个额外的评估者。所有评估者都是以英语为母语的印度人。」

谷歌请印度标注员给Reddit评论数据集打标签,错误率高达30%?

因为根据「Cowen et al. (2019b) 这项研究的结论,印度和美国两地的英语使用者的情绪判断维度很大程度上是相同的。

谷歌请印度标注员给Reddit评论数据集打标签,错误率高达30%?

事实是,尽管掌握了流利的英语,标注员之中的许多人可能不了解所标注文本的文化、社会背景。但这却是关键要点之一,尤其是对于 NLP 数据集,标注者必须具备充分的文化意识。

谷歌请印度标注员给Reddit评论数据集打标签,错误率高达30%?

也就是说,鉴于很多标注员可能缺乏必要的背景知识,即使大多数的数据标注都不存在争议了(如上图),也不代表标注结果就是完全正确的。

造成这种问题的另一个重要原因是,数据集中的数据都没有附加的元数据 (比如作者或子版块名称)。原论文中也提到了这一点:

谷歌请印度标注员给Reddit评论数据集打标签,错误率高达30%?

谷歌请印度标注员给Reddit评论数据集打标签,错误率高达30%?

语言不是处于真空之中的,它所在的版块等信息非常重要。谷歌在构建数据集时却忽略了这一点。

这不是一个孤立事件:作者还提到,假如连谷歌这种拥有大量资源的公司都难以创建准确的数据集,那么我们见过的其他数据集质量更是难以想象。

谷歌请印度标注员给Reddit评论数据集打标签,错误率高达30%?

好消息是,已经有学者关注到了这个问题。上个月,吴恩达发起了「以数据为中心的 AI」倡议,他表示,专注于提升人工智能系统的数据质量将有助于释放其全部力量。

如果你想部署现实中 work 的机器学习模型,是时候关注高质量数据集而不是更大的模型了。

参考链接:

https://arxiv.org/pdf/2005.00547.pdf

https://www.surgehq.ai/blog/30-percent-of-googles-reddit-emotions-dataset-is-mislabeled

相关资讯

LLM 的“母语”是什么?

编辑:alan【新智元导读】在以英语为主的语料库上训练的多语言 LLM,是否使用英语作为内部语言?对此,来自 EPFL 的研究人员针对 Llama 2 家族进行了一系列实验。大语言模型的「母语」是什么?我们的第一反应很可能是:英语。但事实果真如此吗?尤其是对于能够听说读写多种语言的 LLM 来说。对此,来自 EPFL(洛桑联邦理工学院)的研究人员发表了下面这篇工作来一探究竟:论文地址: pdf / 2402.10588项目地址: epfl-dlab / llm-latent-language作者以 Llama2 为

AI 架构 Transformer 再进化:谷歌新方法突破长文本处理,注意力模块内存需求可降至 1/47

科技媒体 marktechpost 昨日(10 月 8 日)发布博文,报道称谷歌公司推出了选择性注意力(Selective Attention)方法,可以提高 Transformer 架构模型的性能。Transformer 架构简介Transformer 是一种革命性的神经网络架构,由谷歌在 2017 年提出,主要用于处理序列数据,特别是在自然语言处理(NLP)领域。Transformer 的核心是自注意力机制,允许模型在处理输入序列时捕捉词与词之间的关系,让模型能够关注输入序列中的所有部分,而不仅仅是局部信息。T

新SOTA,仅几个标记基因即可自动标记,复旦大学开发空间转录组学语义注释贝叶斯框架

编辑 | 萝卜皮空间转录组学的出现,彻底改变了组织内基因表达的研究。然而,注释空间点的生物特性仍然是一个挑战。为了解决这个问题,复旦大学的研究人员引入了 Pianno,一个基于标记基因自动进行结构语义注释的贝叶斯框架。Pianno 在精确注释各种空间语义(从不同的解剖结构到复杂的肿瘤微环境)以及估计细胞类型分布(跨各种空间转录组学平台生成的数据)方面的卓越能力。研究人员使用 Pianno 结合聚类方法,揭示了人类新皮质深层 3 中区域和物种特异性的兴奋性神经元亚型,展示了人类新皮质的细胞进化过程。Pianno 作为