GitHub 7.5k star量,各种视觉Transformer的PyTorch实现合集整理好了

近一两年,Transformer 跨界 CV 任务不再是什么新鲜事了。 自 2020 年 10 月谷歌提出 Vision Transformer (ViT) 以来,各式各样视觉 Transformer 开始在图像合成、点云处理、视觉 - 语言建模等领域大显身手。 之后,在 PyTorch 中实现 Vision Transformer 成为了研究热点。

近一两年,Transformer 跨界 CV 任务不再是什么新鲜事了。

自 2020 年 10 月谷歌提出 Vision Transformer (ViT) 以来,各式各样视觉 Transformer 开始在图像合成、点云处理、视觉 - 语言建模等领域大显身手。

之后,在 PyTorch 中实现 Vision Transformer 成为了研究热点。GitHub 中也出现了很多优秀的项目,今天要介绍的就是其中之一。

该项目名为「vit-pytorch」,它是一个 Vision Transformer 实现,展示了一种在 PyTorch 中仅使用单个 transformer 编码器来实现视觉分类 SOTA 结果的简单方法。

项目当前的 star 量已经达到了 7.5k,创建者为 Phil Wang,ta 在 GitHub 上有 147 个资源库。

GitHub 7.5k star量,各种视觉Transformer的PyTorch实现合集整理好了

项目地址:https://github.com/lucidrains/vit-pytorch

项目作者还提供了一段动图展示:

GitHub 7.5k star量,各种视觉Transformer的PyTorch实现合集整理好了

项目介绍

首先来看 Vision Transformer-PyTorch 的安装、使用、参数、蒸馏等步骤。

第一步是安装:

复制
$ pip install vit-pytorch

第二步是使用:

复制
import torch
from vit_pytorch import ViT

v = ViT(
    image_size = 256,
    patch_size = 32,
    num_classes = 1000,
    dim = 1024,
    depth = 6,
    heads = 16,
    mlp_dim = 2048,
    dropout = 0.1,
    emb_dropout = 0.1
)

img = torch.randn(1, 3, 256, 256)

preds = v(img) # (1, 1000)

第三步是所需参数,包括如下:

  • image_size:图像大小
  • patch_size:patch 数量
  • num_classes:分类类别的数量
  • dim:线性变换 nn.Linear(..., dim) 后输出张量的最后维
  • depth:Transformer 块的数量
  • heads:多头注意力层中头的数量
  • mlp_dim:MLP(前馈)层的维数
  • channels:图像通道的数量
  • dropout:Dropout rate
  • emb_dropout:嵌入 dropout rate
  • ……

最后是蒸馏,采用的流程出自 Facebook AI 和索邦大学的论文《Training data-efficient image transformers & distillation through attention》。

GitHub 7.5k star量,各种视觉Transformer的PyTorch实现合集整理好了

论文地址:https://arxiv.org/pdf/2012.12877.pdf

从 ResNet50(或任何教师网络)蒸馏到 vision transformer 的代码如下:

复制
import torchfrom torchvision.models import resnet50from vit_pytorch.distill import DistillableViT, DistillWrapperteacher = resnet50(pretrained = True)
v = DistillableViT(
    image_size = 256,
    patch_size = 32,
    num_classes = 1000,
    dim = 1024,
    depth = 6,
    heads = 8,
    mlp_dim = 2048,
    dropout = 0.1,
    emb_dropout = 0.1
)
distiller = DistillWrapper(
    student = v,
    teacher = teacher,
    temperature = 3,           # temperature of distillationalpha = 0.5,               # trade between main loss and distillation losshard = False               # whether to use soft or hard distillation
)
img = torch.randn(2, 3, 256, 256)labels = torch.randint(0, 1000, (2,))
loss = distiller(img, labels)loss.backward()
# after lots of training above ...pred = v(img) # (2, 1000)

除了 Vision Transformer 之外,该项目还提供了 Deep ViT、CaiT、Token-to-Token ViT、PiT 等其他 ViT 变体模型的 PyTorch 实现。

GitHub 7.5k star量,各种视觉Transformer的PyTorch实现合集整理好了

对 ViT 模型 PyTorch 实现感兴趣的读者可以参阅原项目。

相关资讯

弱智吧竟成最佳中文 AI 训练数据?中科院等:8 项测试第一,远超知乎豆瓣小红书

离大谱了,弱智吧登上正经 AI 论文,还成了最好的中文训练数据??具体来说,使用弱智吧数据训练的大模型,跑分超过百科、知乎、豆瓣、小红书等平台,甚至是研究团队精心挑选的数据集。在问答、头脑风暴、分类、生成、总结、提取等 8 项测试中取得最高分。没错,论文中的 Ruozhiba 就是指百度贴吧弱智吧,一个充满荒谬、离奇、不合常理发言的中文社区,画风通常是这样的:最离谱的是,弱智吧 AI 代码能力也超过了使用专业技术问答社区思否数据训练的 AI,这下吧友自己都闹不明白了。其他平台围观网友也纷纷蚌埠住。这项研究来自中科院

美国酝酿 AI「登月计划」,陶哲轩领衔 62 页报告重磅发布

【新智元导读】就在刚刚,陶哲轩领衔的一份 62 页报告出炉了,总结和预测了 AI 对半导体、超导体、宇宙基础物理学、生命科学等领域带来的巨大改变。如果这些预测在几十年后能够实现,美国酝酿的 AI「登月计划」就将成真。就在刚刚,陶哲轩领衔的一份 AI 技术对全球研究潜在影响的技术报告发布了。这份报告长达 62 页,总结了 AI 对材料、半导体设计、气候、物理、生命科学等领域已经做出的改变,以及预测它们在未来可能由 AI 产生的改变。报告地址: AI 工具已经改变的科学领域的小插曲,陶哲轩等人还发出了三个呼吁 ——1.

微软正努力治疗 AI 幻觉,以技术手段实时屏蔽和重写毫无根据的信息

就在 GPT-4 因征服标准化测试而登上头条时,微软研究人员正在对其他 AI 模型进行一种非常另类的测试 —— 一种旨在让模型捏造信息的测试。为了治好这种被称为“AI 幻觉”的症状,他们设定了一个会让大多数人头疼的文本检索任务,然后跟踪并改进模型响应,这也是微软在测定、检测和缓解 AI 幻觉方面的一个例子。微软 AI 负责项目的首席产品官 Sarah Bird 表示,“微软希望其所有 AI 系统都是值得信赖且可以有效使用的”。我们可以向这个领域投入许多专家和资源,因此我们认为自己可以帮助阐明“应该如何负责任地使用新