对话华为云马会彬:AI原生应用变革,本质上是一场「从1到 0」的创新

嘉宾 | 马会彬编辑 | 云昭 出品 | 51CTO技术栈(微信号:blog51cto)进入2024年,业界对于生成式AI的注意力开始转向应用层。 AI编程领域的Cursor、AI生成视频领域的可灵、自动驾驶领域的Robotaxi等,都取得了很大的突破。 据有关媒体报道,2024年创投界在AI应用层上的投资规模整体超过了模型层。

嘉宾 | 马会彬

编辑 | 云昭 

出品 | 51CTO技术栈(微信号:blog51cto)

进入2024年,业界对于生成式AI的注意力开始转向应用层。AI编程领域的Cursor、AI生成视频领域的可灵、自动驾驶领域的Robotaxi等,都取得了很大的突破。据有关媒体报道,2024年创投界在AI应用层上的投资规模整体超过了模型层。

这种转变的背后,折射出业界对于大模型的认知发生了新变化。为什么AI应用会成为今年的焦点?

华为云高级技术专家马会彬对此表示,“这背后是因为仅靠大模型难以实现商业闭环。”

马会彬认为,这一轮大模型所带来的AI原生应用,有着之前的传统应用难以实现的三种关键能力:生成能力、推理能力和自然交互能力,从而产生一类新形态应用,如AI助手类应用、具身智能机器人等。然而,在这场AI原生应用变革中,对于组织而言,最大的障碍并不是技术,而是人的思维和认知。

“在大模型时代,我们需要从1到0的逆向思考。当我们从1到0反向思考,你会发现通过大模型的技术,有机会以低成本解决一个高价值的问题的时候,你就会毫不犹豫的去做。”

而这种逆向思考,在华为云内部已经成为了AI实践创新源源不断的驱动力。马会彬告诉我们,在内部已经形成了“AI First”的文化,同时有专门的组织来负责顶层设计,制定总体目标和遵循原则。“在这个顶层设计之下,所有的部门都要去思考:如何引入和运用AI技术去解决自己的业务问题。”而在实践层面,华为云也形成了一套“五阶八步十二检查点”的实践方法论。

在《AIGC实战派》第20期的直播中,我们与华为云架构与技术创新部高级技术专家马会彬围绕“AI原生应用及产品重构”长达150分钟的深入讨论,涉及大模型行业的投资趋势、AI原生应用变革的现状、企业如何切换到AI原生应用赛道、华为云内部的“AI Fisrt”的实践思考等。以下是摘取的精彩观点:

  • 我们需要从1到0反向思考,即:如果用大模型做应用的话,我会怎么去做?我有哪些本质性的变化?创新地方在哪里?
  • 传统软件开发是以人为中心的协同是开发,AI原生软件是以数据为中心的生成式开发。
  • AI原生应用,大家要做的是“sell the work!”,交付的是业务结果本身,而非软件的功能、工具。
  • 所有面向内容生成的AI场景,不再是以前的编辑器,它是一个AI原生的应用,需要按应用的逻辑去做。
  • 一开始要关注的不应该是准确率的问题,而是整个系统能不能够转起来。
  • 有一点非常重要,你要逐渐形成自己的整个框架和流程,并保证AI能力是迭代向上的。
  • 我们看到有很多的指标,有人说80%准确率,有人说90%准确率,其实背后的东西差异很大,最主要还是根据自己的情况来选择。
  • 在向AI原生应用演进时,组织需要思考三个问题:是否需要训练自己的大模型,识别高价值场景,构建相应的组织和能力。

下面是对话的整理内容,供各位翻阅。

1.51CTO:进入2024以来,您关注到最近大模型业内发生了怎样的变化?

马会彬: 宏观上,我看到一篇报道说今年的创投资金在AI应用层的投资规模超过了大模型这一层,这是一个总体的统计。大家都知道,去年业界谈论大模型比较多一些,今年可能大家都转向了应用这一层。大家逐渐意识到,单独大模型这一层比较难以实现商业闭环,因此,整个业界的注意力就从模型转向场景和应用这一层,这是一个整体的趋势。

从微观的具体场景上看,今年涌现出了很多AI应用层的创新和突破,比如AI辅助编程领域Cursor、国内的AI生成视频应用、大模型驱动的具身智能机器人等。而且现在有了大量的基于ToC或ToB的AI应用,大家开始在日常生活、工作中逐渐使用起来了。

这是一个潜移默化的变化,最后发生质变时可能大家都很难意识到。

2.51CTO:我们如何理解AI Native应用?

马会彬:简单来讲,AI Native可以理解为“拟人化”,包括大模型的深度神经网络、深度学习算法, 就是模仿人的大脑的神经元及神经元的连接机制;此外,大模型的推理机制也是拟人化的:生成能力、推理能力和自然交互能力。

这三个能力都是拟人化的“智力”,有了这三个能力之后,首先会出现一批新形态的应用,即大家所说的各种AI助手类的应用,又可以分为两类,一类是面向数字世界的助手就是我们刚才提到的知识工作者的助手,而第二类就是面向物理世界的助手,即具身智能机器人;他们都可以实现对人的辅助或者部分代替,人的天性是懒惰的,总有一些不想自己做的事情,就可以交由拟人化的智能设备、智能应用来帮你去做;上面这两类,我们称之为AI原生的应用。

除了AI原生应用,还有一些传统应用,例如原来的CRM、MES等,它们的功能都还存在,比如CRM,原来的订单功能还在,但是AI会重塑传统应用。任何一个应用都可以分解成两层,比如网银,它的底层可以被视为一个记录系统,记录每一笔账,这个记录系统是稳定的,但是上层的交互系统会被AI重构。大家看到大量的前端AI助手类的出现,主要是改变了交互和协同这一层。

AI重构的不止传统的软件,还包括偏硬件的一些设备、工具,它们也会叠加一些AI的能力,成为AI使能的产品。

3.51CTO:具身智能也是一个新颖的词汇,您如何看?

马会彬:从能力讲,具身智能有两大核心能力,第一个是移动能力,从A点移动到B点,它可以自主寻址,自主移动。另一个是操作和执行能力;如果要达到真正像人一样,能够在开放场景、执行开放任务,必须有个具身智能的大脑系统。目前相对而言,本体的移动能力已经很强了,但现在比较复杂的两个点:一个是上肢的精准协同和精准控制,因为操作主要依赖手的灵活性;另一个则是大脑,因为在一个物理空间里面,既要移动,又要执行操作,这个挑战是比纯语言模型复杂许多。

4.51CTO:回过头来,我们如何看待这波大模型技术对行业带来的影响?

马会彬: 现在的大模型,跟之前的AI模型相比,在架构上有着本质的区别。因此业界也通常分为“判别式AI / 经典AI”跟“生成式AI”。

此外,模型的场景泛化能力也有着有很大的差别。相对来讲,经典AI一般都是针对一个特定的场景,用精准的标注数据去做训练,而大模型是面向通用的场景使用非标注数据训练。

所以现在需要大家对当前的软件、工具、算法进行反向思考,也就是“从1到0的反向创新”。之前比较多的是从0到1去构建一个新的东西,但现在的话,无论是工具、软件还是其他,日常需要用到的东西基本上都有。所以,在大模型出来之后,需要反向从1到0思考,如果用大模型来重构的话,我会怎么去做?有哪些本质性的变化?创新的地方在哪里?

在逆向思考的过程中,就会发现很多有趣的问题:原来可能比较复杂的,比较困难,或者是说成本比较高的障碍,也许用了新的方式之后,就不再是障碍了。

譬如乘用车的自动驾驶,就是一个比较经典的例子。乘用车自动驾驶在此前很多年,一直没有太大突破。现在大模型出来之后,很快就在自动驾驶领域涌现出了端到端的神经网络大模型,比如VLM、VLA。它本质上也是拟人化的,因为它不再是通过基于感知、规划等一个个小算法去写车辆的操控动作,这种模式有一个很大的问题,就是现实中算法要应对的场景特别多,你会发现算法中corner case和bad case根本枚举不完,很难提升到更高级别的智驾能力。

切换到端到端的大模型解决方案以后,很快就发生了本质的变化,它可以拟人化地学习人的感知和操控,通过大规模的数据训练,不需要再去考虑corner case、bad case就能学习到通用方法。例如特斯拉宣称FSD v12基于端到端的神经网络大模型方案,不仅减少了30万行C++代码,而且,整体的驾驶能力和水平也有了本质的提升。v12版本之前,基于小模型算法的方案,其自动驾驶的使用增长曲线是比较平的,而v12之后,这条曲线就变得非常陡峭。

以此类比,其他的业务、应用也有很多采用大模型的方法进行重构后,应用的价值增值也非常显著,据业界一个统计,一些软件的可能增加了100%甚至120%的新价值。

所以,当发现“从1到0”反向思考当前的业务,就有机会以低成本解决一个高价值的问题的时候,就会毫不犹豫的去做。

5.51CTO:大模型作为确定性的趋势,那么切换到这条赛道上,企业还有哪些关键问题需要考虑?

马会彬: 放到企业视角来讲的话,我认为需要思考三个根本的问题。

首先,一个公司或组织需要考虑是否需要训练自己的大模型,是从零开始训练,还是基于已有的模型为基座来做增量训练、后训练或调优,这跟你的业务特征和私域数据有很大的关系。

第二个问题,则是要识别出行业的高价值场景。对于组织或行业来讲,AI改变它的场景是什么?这是要去思考和定义的。

第三个则是组织和能力的问题,就是需要怎样的组织和能力匹配这个战略。

这三个问题如果都有答案了,就可以去具体评估原来业务中哪些依然是有效的,哪些需要被重塑的。

业界讲“优势抵不过趋势”,大模型是确定性的确实,我们肯定要顺应趋势去看。当然,企业内部其实还是需要有一些框架和方法论的东西来指导,因为实际可投入的资源总是有限的。

所以,在业务中引入大模型,具体怎么去落地,相对来讲是一个比较严谨的事情。在华为云内部,我们是有相关的方法论和框架来辅助客户去做决策、评估、场景选择等,它并不是说完全一个拍脑袋的事情。

6.51CTO:在华为云内部,是如何考虑怎样引入这场AI原生变革的?

马会彬:概括来讲可以分为两层,第一层我们称为确立AI First 的思维范式。在公司内部,提供了相关的学习、培训,而且从部门、组织的角度都要去思考“all in ai”这件事情在自己的业务领域上要怎么去做,如何用 AI Native 的技术和方法来重构业务、重塑流程;第二层,我们称之为AI Native的落地实践,刚才我提到了用于指导实践的方法论,即“五阶八步十二检查点”,比较系统详细,这里就不详细展开讲了。

在华为内部,华为云作为内部管理和各产业的底座平台,会为内部的研、产、供、销、服、行政、后勤、财经等提供技术平台。这些部门利用华为云的平台和技术就积累了大量的场景化业务资产,我们把这些资产称为“经验”。

现在华为云的aPaaS,定位就是“经验即服务,让优秀得以复制”。目标就是将其中可以被重用的部分场景化业务资产进行产品化,服务于我们的内外部客户。我们在AI实践方面开始得比较早,我们希望能够把内部积累的AI经验及成果提供给客户和伙伴。

7.51CTO:从业务视角上看,如何思考“现在的应用都值得重新做一遍”?

马会彬: 业界很多大佬都有类似的说法,从趋势和方向性来讲确实如此。但作为架构师,首先要问why 和 how 的问题,即为什么要重做一遍,以及如何去重新做一遍;我觉得可以从业务视角和技术视角两个维度去分析。

从业务视角讲,就是改变了传统软件的交付和使用方式,以及软件的商业模式。之前的软件不管是哪一种类型,HR软件也好、PS软件也好,都是工具软件,即需要专业的人去操作这个软件才可能完成业务功能。然而,这里的操作有相当的门槛要求,必须是行业或领域的专业人才或者专家,必须接受一定的培训学习才能完成。

基于大模型的软件系统提供的则是“sell the work!”,交付的是业务结果本身,而非software。

大模型是知识和经验的压缩,如果能把领域顶级专家的经验和知识压缩到模型里面,或者内化到AI原生的应用中,它能否在一定程度上代替这个专家完成对应的操作?所以交付的不再是一个工具,而是更直接的业务结果。

例如一个画图软件,以前你必须得画才能得到作品,现在你只需要告诉你要什么东西,它直接给你生成了。再比如自动驾驶的例子,现在已经出现“出行即服务”的案例。

8.51CTO:华为云具体是如何通过aPaaS赋能AI原生应用的,它提供了哪些服务和能力?

马会彬:我先简要介绍一下华为云的服务构成,这样大家就能理解华为从全栈的角度是如何构思的。华为云的slogan就 “一切皆服务”(Everything is Service),可以分为三层。第一层是基础设施即服务,就是常说的IaaS,这个大家比较熟悉。第二层是技术即服务,即PaaS,包括数据库、中间件、大数据,以及AI大模型等。基础设施即服务和技术即服务都是相对标准化的产品,而第三层“经验即服务”,更靠近业务场景。中文的“经验”一词,英文可以对应到两个词:一个是 “expertise”,就是解决某一个问题的能力,另外一个词即“experience”,就是有没有经历过一件事情,中国人常说“行万里路”等,你对一个事情的实践就是“experience”,这两方面加起来才是“经验”的核心。

那么,华为云的“经验即服务”中的经验从哪里来?它的构成是什么?第一个来源就是华为的内部实践;第二个来源是来自于生态伙伴。“经验即服务”从产品构成来讲可以分为三层,第一层是AppStage应用平台,这是一个围绕应用生命周期的一站式开发管理平台。业界有个专业名词叫IDP(Internal Development Platform),就是所有大型组织在做研发的时候都有一个内部公共平台,因为在工具链之上,还会有架构规范、技术规范、安全加固规范等,而要把这些规范落实到具体的开发活动中,就必须把它内化到的研发流程、预定义模板、框架包等各种细节中去。

这个平台承载了围绕应用构建、开发、测试等一系列活动的build-in经验资产。在这个平台之上,有三类不同的应用对象,分别为IT应用、移动APP应用、以及现在的AI原生应用。面向这三个不同应用,在AppStage平台上构建了两个引擎,一个是AI原生的应用引擎,就是面向AI原生应用的工程体系,包括模型中心、知识中心、Agent构建、安全合规能力,此外还有一些内化的经验资产,比如模型、数据、意图识别等的经验化等。其二,就是AI原生数据引擎,即如何把企业结构化的和非结构化的数据,转换成使用户大模型及AI应用所能够消费和使用的知识。

在这个平台之上,我们有基于业务场景化资产孵化的6个Koo系列产品,包括KooPhone、KooDrive、KooMessage等,它们也是首先进行AI原生化重塑的,因此也就具备了AI原生的智能营销、AI原生的云终端、AI原生的内容中枢等。

第三层是面向行业的场景化资产,我们也称为“行业aPaaS”,目前有面向政务的事件中心、面向园区、设施管理的设施aPaaS等。

9.51CTO:在华为云内部是怎样为AI应用设定进一步推广的准确率标准的?

马会彬:现在的做法是不直接使用准确率或满意度这两个指标,因为它们都比较难以准确评估。比如你说准确率要达到60%才算可以,但60%到底是高还是低,其实跟具体场景是密切相关的。

所以现在往往用采纳率来度量,比如以生成JD(Job Description)为例,你生成的JD有多少比例被接纳了,这些数据都是容易被统计的,更能真实地反映AI应用达成的效果。通常会跟一个业务平均水平高一点的人去类比,来看这个结果到底是不是达到一个比较理想的状态。

另外它是有一定的容忍度的,并不追求百分之百的准确。而是达到一个参照水平,从业务上来讲能够带来正向作用,达到业务结果的最终使用方或者内部可接受的程度就可以了。

所以,还是根据实际情况来评估。也许对某些场景来说,要99%的准确率才可以,但对某些场景来说,可能50%或60%就已经足够了。我们只要确定一点,就是系统整体是迭代向上的,这是非常关键的。因此最重要的是尽早构建整个AI应用的框架和质量流程,使AI作业能够迭代优化起来。

总结来说,第一步关注的不应该是准确率的问题,更需要注意的是整个系统能不能够持续迭代起来。第二步,在持续迭代起来的时候,能不能准确地找到系统里面的关键问题或者说关键优化点,围绕数据、模型、工程、前端、企业应用等有很多方面,到底哪个点是高价值部分,是自己可以控制的,这很关键。

很多人一开始可能会犯一个错误,就是看这个准确率不高,然后可能就放弃了,但其实找到那个能让AI应用持续改进的关键点,进行持续迭代优化才是最重要的。

想了解更多AIGC的内容,请访问:

51CTO AI.x社区

https://www.51cto.com/aigc/

相关资讯

美图创始人吴欣鸿:Sora 给行业较大心理冲击,原本以为 2-3 年后才能实现

美图公司昨日披露 2023 年业绩报告,全年实现总收入 27 亿元,同比增长 29.3%。经调整后归属于母公司权益持有人净利润 3.7 亿元,同比增长 233.2%。据新浪科技报道,美图公司创始人、董事长兼首席执行官吴欣鸿在业绩会上表示,AI 原生工作流会是未来非常巨大的机会,美图会致力于 AI 原生应用的进一步打造。同时他还强调,美图不会做通用大模型,但美图会针对不同垂直场景的需求做模型的训练和微调。吴欣鸿透露,Sora 给了行业较大的心理冲击,原本以为这样的能力会在 2-3 年后才能实现。Sora 也让美图反省

文心大模型融入荣耀MagicOS!打造大模型“端云协同”创新样板

2024年1月10日,在荣耀MagicOS 8.0发布会及开发者大会上,荣耀终端有限公司CEO赵明宣布了“百模生态计划”,并与百度集团执行副总裁、百度智能云事业群总裁沈抖共同宣布,百度智能云成为荣耀大模型生态战略合作伙伴。沈抖在现场演讲中表示,“端云协同”是大模型到端侧应用的创新范式。端侧大模型更懂用户意图,云侧大模型擅长处理复杂问题,满足用户深层次需求,端侧、云侧能力互补、相互结合,将为用户带来卓越的体验。大模型将驱动移动应用二次爆发,不止现有的800万移动应用会基于大模型加速升级、重构,未来还将诞生更多全新的A

全球首家!Crane成FinOps首个认证降本增效开源方案

刚刚,腾讯云开源项目 Crane(Cloud Resource Analytics and Economics)正式成为FinOps认证解决方案(FinOps Certified Solutions)。作为全球范围内首个开源的FinOps认证解决方案,Crane能够助力云原生用户充分发挥云上资源的最大价值,帮助企业降本增效。据了解,为推进云原生用户在确保业务稳定性的基础上做到真正的极致降本,腾讯云率先在国内推出了第一个基于云原生技术的成本优化开源项目 Crane。Crane 遵循 FinOps 标准,旨在为云原生用