AlphaFold 预测细菌生存所需的 1402 种蛋白互作,最完整的细菌必需相互作用图谱

革兰氏阴性必需相互作用组。(来源:eLife)编辑 | 紫罗细菌蛋白质组平均由约 4000-5000 个蛋白质组成,这意味着相互作用组可能多达 2000 万个相互作用。据估计,大肠杆菌中大约有 12,000 种物理相互作用。然而,并非所有这些相互作用都对细菌的生存至关重要。对生物体中蛋白质相互作用的研究,是理解生物过程和中心代谢途径的基础。然而,我们对细菌相互作用组的了解仍然有限。近日,西班牙巴塞罗那自治大学(Universitat Autònoma de Barcelona,UAB)的研究人员使用人工智能工具 A

AlphaFold 预测细菌生存所需的 1402 种蛋白互作,最完整的细菌必需相互作用图谱

革兰氏阴性必需相互作用组。(来源:eLife)

编辑 | 紫罗

细菌蛋白质组平均由约 4000-5000 个蛋白质组成,这意味着相互作用组可能多达 2000 万个相互作用。

据估计,大肠杆菌中大约有 12,000 种物理相互作用。然而,并非所有这些相互作用都对细菌的生存至关重要。

对生物体中蛋白质相互作用的研究,是理解生物过程和中心代谢途径的基础。然而,我们对细菌相互作用组的了解仍然有限。

近日,西班牙巴塞罗那自治大学(Universitat Autònoma de Barcelona,UAB)的研究人员使用人工智能工具 AlphaFold,预测并模拟了细菌中必需(essential)蛋白质之间的 1402 种相互作用。

研究人员绘制了最完整的细菌必需相互作用图谱,即蛋白质如何结合和相互作用以执行其生存所必需的功能。

这些结果揭示了这些机制以前未知的细节,并为开发新的抗生素提供了潜在的靶点。

该研究以《Structural assembly of the bacterial essential interactome》为题,于 2024 年 1 月 16 日发表在《eLife》杂志上。

图片

论文链接:https://elifesciences.org/articles/94919

并非所有相互作用都对细菌生存至关重要

细菌执行许多对其生存至关重要的功能,包括能量产生、DNA 复制、转录、翻译、细胞分裂和细胞壁合成等。所有这些过程都涉及到需要一组重要蛋白质协同作用的复合物:没有它们,这些过程就不会发生,细菌就会死亡。

因此,详细了解这些必需过程是如何调节的、涉及哪些蛋白质以及它们如何相互作用,对于了解细菌生长、繁殖和生存的机制至关重要。

迄今为止所采用的实验技术已经能够识别蛋白质之间的数百万种相互作用以及这些蛋白质的数千种结构,但这些都是原始数据,会产生大量误报;事实上,这些互作是没有价值的。

利用最近开发的人工智能模型,例如 AlphaFold2,已经可以以与实验方法相似的精度获得蛋白质结构,并区分真正的蛋白质-蛋白质相互作用和错误相互作用(假阳性)。

开发必需相互作用组(interactome)的完整图谱,是研究蛋白质功能组织和确定发现新抗生素的新靶点的有力策略。

AlphaFold 预测对细菌生存至关重要的 1402 种相互作用

巴塞罗那自治大学的生物化学和分子生物学系的研究人员使用 AlphaFold2 人工智能模型来预测对细菌生存至关重要的一组蛋白质-蛋白质相互作用,总共有 1402 种可能的相互作用,构成了所谓细菌必需相互作用组的最完整图谱。

「我们获得了细菌必需相互作用组的图谱,其中收集了细菌生存和繁殖所必需的所有相互作用。我们使用新的人工智能工具,特别是 AlphaFold,从结构上表征了这些相互作用,」UAB 讲师 Marc Torrent 解释道。「我们相信这些结构可以为新抗生素的开发提供参考,因为能够抑制这些相互作用的分子会像抗生素一样具有不寻常的作用机制。」

并非所有相互作用都对细菌的生存至关重要。为了区分必要的相互作用,研究人员只考虑了那些相互作用形成复合物的两种蛋白质存在于至少两种不同细菌物种中的蛋白质。

图片

图示:对 AF2 预测的必需二元复合物进行分析。(来源:论文)

研究人员使用革兰氏阴性和阳性蛋白质列表,研究了必需蛋白质相互作用网络。通过 AF2-Multimer 建模, 并使用 ipTM 分数对模型进行分类,发现从数据库中检索到的许多必需 PPI 可能是假阳性。ipTM 与 pDockQ2 相关性较强。验证表明模型与实验数据一致。pDockQ2 是一个非常准确但具有限制性的指标。因此,选择 ipTM 来评估预测的相互作用。

AlphaFold2 卓越的预测能力

为了测试 AlphaFold2 的可靠性,研究小组将其预测与事先通过实验获得的 140 个蛋白质-蛋白质相互作用进行了比较。AF2 准确预测了这些结构中的 81%(140 个中的 113 个)。

在生成的所有模型中,83%(140 个中的 116 个)在正确折叠方面几乎与原始结构相同。最有趣的是,72%(140 个中的 101 个)的预测结构在相互作用界面处的均方根偏差方面相似,并且 56%(140 个中的 79 个)的界面与真实结构几乎相同,凸显了 AF2 出色的预测能力。

研究人员认为,在实验数据库中发现的许多蛋白质-蛋白质相互作用复合物可能是假阳性。

图片

图示:革兰氏阴性菌和革兰氏阳性菌的必需相互作用组。(来源:论文)

总之,研究人员为革兰氏阴性菌和革兰氏阳性菌组装了一个高精度的必需相互作用组,这将使我们能够识别蛋白质中心并研究这些相互作用的重要性。

新的、以前未知的必需蛋白质复合物

研究人员强调,使用这种方法发现了一组以前未知的蛋白质-蛋白质相互作用,这些相互作用在九个必需过程中发挥作用:细胞膜中的脂肪酸生物合成、外膜中的脂多糖合成、脂质转运、外膜中的蛋白质和脂蛋白转运、细胞分裂、杆菌中延长形状的维持、细菌繁殖的 DNA 复制和泛素合成。

对这些新发现的蛋白质复合物结构的详细了解为了解这些重要细菌过程中涉及的分子机制提供了新的见解,并为新抗生素的开发铺平了道路。

研究人员希望,随着使用更大数据集的深度学习模型的不断训练,将在不久的将来生成更准确、更自信的蛋白质复杂模型。

参考内容:https://phys.org/news/2024-02-ai-interactions-key-bacterial-survival.html

相关资讯

AI 找出限制抗生素耐药性的最佳治疗策略,预防「超级细菌」

编辑 | 绿罗抗生素将人类平均寿命至少提高了十年以上。但抗生素的作用已不如以前,部分原因是抗生素的广泛使用。「世界各地的卫生机构一致认为,我们正在进入后抗生素时代,」克利夫兰诊所(Cleveland Clinic)医学博士 Jacob Scott 解释道。「如果我们不改变追踪细菌的方式,到 2050 年,死于抗生素耐药性感染的人数将超过死于癌症的人数。」克利夫兰诊所的研究人员开发了一种人工智能 (AI) 模型,该模型可以仅根据细菌在特定扰动下生长的速度,确定治疗细菌感染的最佳药物组合和时间表。相关研究以「Reinf

以「钥匙和锁」方式设计分子,浙大&碳硅智慧开发3D分子生成新模型SurfGen

编辑 | 紫罗高效的从头设计是计算机辅助药物发现的巨大挑战。上个月,浙大侯廷军团队和碳硅智慧合作提出了一种基于蛋白口袋的三维(3D)分子生成模型——ResGen,ResGen 计算效率更高,比之前最好的技术快大约八倍。研究成果发表在《Nature Machine Intelligence》上。近日,该团队又在《Nature Computational Science》发表了其最新研究,提出用于基于结构的分子设计新模型——SurfGen。近年来,真实的结构特异性三维分子生成已经开始出现,但大多数方法将目标结构视为偏向

辉瑞 AI 方法登 Science,揭示数以万计的配体-蛋白质相互作用

编辑 | X尽管蛋白质结构预测取得了重大进展。但对于 80% 以上的蛋白质,迄今为止尚未发现小分子配体。识别大多数蛋白质的小分子配体仍具有挑战性。现在,奥地利科学院分子医学研究中心 CeMM 的研究人员与辉瑞公司合作,开发了一种方法来预测数百种小分子与数千种人类蛋白质的结合活性。这项大规模研究揭示了数以万计的配体-蛋白质相互作用,通过探索这些相互作用,从而可以开发化学工具和治疗方法。此外,在机器学习和人工智能的支持下,它可以「公正」地预测小分子如何与活体人类细胞中存在的所有蛋白质相互作用。相关研究以《Large-s