AI技术:制造业的未来还是泡沫幻影?

在探讨制造业的未来时,一个不可忽视的趋势是高科技制造业对人工的依赖正在逐渐减少。 传统观念中,人工操作往往被视为生产过程中的污染源,如呼吸、皮肤屑、头发等都会对精密制造构成威胁,同时人工操作也伴随着各种错误和失误的风险。 因此,全自动化的生产车间,依托人工智能技术的强大支撑,正逐步崛起为制造业发展的新航标。

在探讨制造业的未来时,一个不可忽视的趋势是高科技制造业对人工的依赖正在逐渐减少。传统观念中,人工操作往往被视为生产过程中的污染源,如呼吸、皮肤屑、头发等都会对精密制造构成威胁,同时人工操作也伴随着各种错误和失误的风险。因此,全自动化的生产车间,依托人工智能技术的强大支撑,正逐步崛起为制造业发展的新航标。

然而,在谈论人工智能(AI)时,又不得不正视一个现状:尽管AI被寄予厚望,但目前真正将AI应用得好的案例并不多。在许多场景下,AI仅仅被用作一个简单的助手,如页面弹出的小应用,帮助总结信息或生成视频,其实际价值相对有限。这引发了人们对AI实际作用的质疑。

那么,AI是否会像前三次工业革命一样,彻底改变世界?如何保障AI的发展为智能制造赋能?在由企业网D1net、信众智(CIO智力输出及社交平台)和中国企业数字化联盟共同主办的“制造业标杆两会”之“2024全国制造业数智化大会”上,非夕机器人

CIO 刘歆轶发表了“建立人工智能管理体系,保障数智化发展”的实践分享,为行业提供了宝贵的实践启示与思考。

AI技术:制造业的未来还是泡沫幻影?

非夕机器人 CIO 刘歆轶

制造业与AI:从历史革新到未来颠覆

刘歆轶认为,目前,AI尚未带来显著的变革,这主要是因为其发展和应用仍处于初级阶段,真正的变革时刻尚未到来。

回顾历史上四次工业革命(蒸汽机、电力、信息技术、智能化)的脉络,可以看到,自2010年起,以虚拟技术、数字孪生、云计算等为代表的新技术,正在逐步改变制造业的面貌。虚拟现实、增强现实等技术被应用于设计和生产过程,机器人和无人机等自动化设备在工厂中发挥着越来越重要的作用。

展望未来,AI必将进一步颠覆社会和生活方式。随着技术的不断进步和应用场景的拓展,AI将在制造业中发挥更加核心的作用,推动生产效率的进一步提升和工厂布局的深刻变革。

从启动到成熟的发展之路

在探索人工智能的整体发展状况时,不得不提及一个关键的概念——“技术成熟度曲线”。这一曲线将某个新技术的发展划分为五个阶段,形象地揭示了该技术从诞生到成熟的演变过程。

第一阶段:技术启动。当某个创新的技术首次亮相,它往往会吸引大量的关注和追捧。这一阶段的特征是技术的初步探索和概念的形成。

第二阶段:期望膨胀。随着技术的不断发展和媒体的炒作,公众对该技术的期望迅速上升。然而,这种期望往往超出了技术当前的实际能力,形成了一个“期望的山峰”。

第三阶段:失望谷。当该技术无法完全满足过高的期望时,人们开始感到失望。这一阶段,技术面临诸多挑战和质疑,许多项目因难以落地而被迫放弃,技术似乎跌入了“失望的谷底”。

第四阶段:爬坡阶段。对于那些真正有价值的技术来说,它们并不会在失望中消亡。相反,它们会经历一个艰难的爬坡阶段,通过不断的改进和优化,逐渐找到实际应用的场景,并逐步走向成熟。

第五阶段:生产力高地。最终,技术达到了“生产力高地”,成为广泛应用的成熟技术。在这一阶段,技术不仅稳定可靠,而且能够为社会带来显著的效益。

目前,人工智能相关的技术大多仍处于第一阶段和第二阶段。尽管有一些技术如计算机视觉、知识图谱等已经相对成熟,并在某些领域得到了广泛应用,但整体来看,AI的发展还有很长的路要走。

值得注意的是,AI技术对社会的影响还远远没有达到被高度重视的程度。这其中一个重要的原因是,目前还没有与AI技术相配套的完整设施。如果把AI技术看作是一个孤立的“发动机”,而忽视了与之相配套的“飞机设计”、“航线管理”、“通讯系统”等,那么这个“发动机”将无法真正发挥其应有的作用。

因此,从系统的角度出发,全面考虑AI技术的应用场景、配套设施、规章制度、人员培训等方面的问题,才能够让AI真正发挥其应有的价值。这是一个需要长期努力和不断探索的过程。

专业细分引领未来,广泛应用创造价值

刘歆轶表示,在当今科技日新月异的时代,AI领域正经历着两场深刻的变革,引领着未来的技术风向标。

首先是从“大而全”到“小而精”的模型演变。曾经,大模型堪称AI界的明星,凭借强大的计算能力和广泛的数据覆盖,成为众人瞩目的焦点。无论是科研探索还是商业应用,大模型都扮演着举足轻重的角色。然而,未来的趋势却悄然指向了“多个模型,专业细分”的方向。

微软、苹果、英伟达等科技巨头纷纷推出自家专属的AI模型,这些模型不再追求大而全,而是专注于特定领域,追求小而精。以苹果最新发布的iPhone 16为例,其AI架构便包含了三层:内置小模型负责即时响应,苹果自研大模型提供深度支持,同时开放接口接入第三方大模型,根据任务需求智能调度,实现效率与效果的双重优化。

这一趋势预示着,未来的AI应用将更加贴近生活,专业领域的小模型将如毛细血管般嵌入各类设备,从智能家居到工业生产线,每个角落都将闪耀着AI的智慧之光。

第二个趋势是从“盆景”到“风景区”的应用拓展。如果说当前的AI应用还只是一盆精致的盆景,那么未来,它将成为一片广袤无垠的风景,进而发展成为带来经济效益的风景区。

现有的AI技术,如ChatGPT,虽已展现出惊人的文本生成能力,但其应用场景仍相对局限。未来的AI,将不再满足于简单的文本或视频输出,而是要将智能力量融入社会的每一个角落,让AI成为推动社会进步的重要引擎。

正如业内专家所强调的,AI的目标是将“风景”变成“风景区”,即让AI技术广泛应用于各行各业,创造实际价值,推动经济社会发展。未来,AI将与日常生活深度融合,从冰箱到洗碗机,甚至家中的每一个角落,都可能成为AI展现智慧的舞台。

全方位赋能制造业,重塑产业生态格局

在制造业转型升级的浪潮中,AI技术正逐步渗透至行业的每一个角落。从产品设计的初稿勾勒,到生产线的精密制造,再到物流运输的精准调度,乃至售后服务的细致入微,AI小助手、设计助手、运营助手等智能角色正全方位融入制造业的全产品生命周期管理。

在这场变革中,AI不仅提升了各环节的运作效率,更以自动化的数字能力,助力企业构建起智能化的运营管理体系。无论是财务后台的精细化管理,还是企业资源的优化配置,AI的嵌入都使得原本繁琐复杂的流程变得井然有序,实现了数据驱动的决策支持,让企业管理更加科学、高效。

更为深远的是,AI技术正在重塑制造业的生态格局。传统上,企业与上下游的合作往往基于偶然因素,缺乏深度挖掘与协同。而AI的引入,则如同一条智能纽带,将供应链上下游紧密连接在一起。通过AI对大数据的深度分析,企业能够发现之前未曾察觉的业务关联,挖掘出潜在的商业价值,从而构建起更加稳固、多样化的生态系统。这一变革不仅增强了企业间的协同效应,更促进了产业链上下游的资源优化配置,为制造业带来了前所未有的发展机遇。

AI技术背后的多重风险与挑战

刘歆轶指出,在AI技术日新月异的今天,其背后隐藏的安全风险不容忽视。从数据安全到语料安全,再到算法与模型的潜在问题,乃至社会伦理的深刻挑战,每一环节都值得深入剖析与警惕。

数据安全风险:全生命周期的隐忧。在AI的全生命周期中,数据安全始终是一个悬而未决的难题。尽管传统安全手段在一定程度上能够缓解风险,但面对AI领域的复杂性与多变性,这些手段往往力不从心。数据泄露、篡改等安全隐患,时刻威胁着AI系统的稳定性与可信度。

语料安全风险:标签化的双刃剑。语料作为AI训练的重要基石,其质量与安全性直接关乎AI的输出效果。然而,从互联网海量数据中提取并标签化语料的过程,不仅耗时耗力,更隐藏着巨大风险。一些企业为追求效率,不惜采用低成本的人力标签化方式,甚至引发“血汗工厂”的争议。此外,语料采集的广泛性与多样性,也可能导致输出结果的偏差与失真,进一步加剧风险。

算法与模型风险:决策的未知领域。算法与模型是AI的核心,但同时也是风险的聚集地。不良信息的传播、可解释性的缺失、伦理偏见的潜藏,都是算法与模型需要直面的挑战。在追求性能与效率的同时,如何确保算法的公正性、透明性与可解释性,成为亟待解决的问题。

社会伦理风险:价值观的碰撞。AI的价值观与人类价值观的一致性,是AI技术能否被社会广泛接受的关键。然而,伦理的多元性与文化背景的差异,使得这一目标的实现困难重重。不同国家、不同民族对于伦理的理解与界定各不相同,这可能导致AI在决策过程中产生与人类社会伦理相悖的行为,进而引发社会争议与冲突。

可解释性风险:黑盒决策的隐忧。AI决策的黑盒状态,是当前AI技术面临的又一重大挑战。当AI做出的决策无法被人类理解或解释时,其可信度与接受度将大打折扣。这种不可知的决策过程,不仅可能损害用户利益,更可能对社会稳定与安全构成潜在威胁。

鲁棒性:AI的脆弱一面。AI系统在面对外界攻击时,可能会表现出令人担忧的鲁棒性。这种脆弱性源于系统对逻辑审查的绕过,使得攻击者能够利用巧妙的话术或策略,诱使AI做出不符合预期的行为。这种风险不仅关乎数据的安全,更可能触及法律与道德的底线。

知识产权:AI创作的模糊地带。AI生成内容的知识产权问题,是当前法律与科技界争论的焦点。从伦勃朗画作的复制,到网站生成的无版权人脸,再到猴子自拍引发的法律争议,一系列案例揭示了AI创作与知识产权之间的复杂关系。目前,由于西方采用案例法,AI生成的内容大多不被视为受知识产权保护的作品。然而,这一现状正面临着越来越多的挑战与质疑,未来如何平衡AI创作与人类的知识产权,将是一个亟待解决的问题。

实体风险:AI识别系统的安全隐患。AI在实体世界的应用,如自动驾驶汽车、智能识别系统等,同样面临着严峻的安全挑战。从穿错T恤导致的误识别,到激光笔攻击造成的交通混乱,再到不透明胶带引发的识别错误,这些案例揭示了AI识别系统在特定情境下的脆弱性。这些风险不仅可能危及个人安全,更可能对社会秩序造成严重影响。

内容准确性:AI理解的局限。AI生成的内容往往缺乏精确性,其背后的原理是基于概率学的字词关联,而非对语境的深入理解。这种局限性导致AI在面对具体、准确的问题时,可能会给出错误的答案。未来,随着因果推理技术的发展,AI有望真正理解世界的逻辑,从而提供更加准确、可靠的输出。

构建AI标准体系,助力技术规范发展

随着AI技术背后的安全与管理问题日益凸显,且各领域各自为政的现状,使得AI技术的规范与发展缺乏统一的指导与监督。为此,ISO组织成立了专门的42小组,致力于构建全面的AI标准体系,为AI的健康发展保驾护航。

ISO 42小组制定的AI相关标准,其框架涵盖了基础标准治理、风险管理、影响评估、质量管理等多个关键领域。自成立以来,该小组已推出了31项标准,为AI技术的规范应用提供了有力支持。其中,2023年12月推出的ISO 42001标准,更是标志着AI标准框架的正式确立,为AI系统的全面管理提供了整体公认的框架标准。

ISO 42001作为AI管理的整体框架,旨在全面评估AI系统对个人、小群体及社会可能产生的影响,不仅与其他标准存在紧密的关联与继承关系,更将影响并引导未来AI相关标准的制定。

与ISO 27001安全认证类似,ISO 42001也将成为AI系统安全性的重要认证依据。通过这一认证,企业可以证明自己的AI系统符合公认的安全标准,从而增强用户与合作伙伴的信任。这种可认证性,不仅有助于提升AI系统的可信度,更为AI技术的广泛应用奠定了坚实的基础。

ISO 42小组在制定标准的同时,还高度关注AI风险的管理与最佳实践的提炼。其目录A+B页列出了AI风险相应的控制目标及最佳实践,为使用者提供了具体的操作指南。此外,附录C页更是列出了8个不同的风险源,帮助使用者识别并应对AI技术可能带来的各种风险。

总之,ISO 42小组及其制定的AI标准体系,正为AI技术的规范与发展提供着强有力的支持。通过ISO 42小组的努力,AI技术将更好地赋能制造行业,推动其向更加智能化的方向发展。同时,这一标准体系也将助力构建更加可信、安全的AI环境,为AI技术的广泛应用创造有利条件。

相关资讯

六位专家探讨如何平衡IT项目、支出和风险

要构建一个具有韧性的技术体系,高管董事会必须在拥抱新技术的同时管理风险,并使支出与业务目标相一致。 企业技术领导者已从其企业获得了明确的指示:利用最佳技术支持更广泛的业务目标。 为了实现这一目标,CIO需关注两个关键因素:成本和风险。

咨询业大规模变革背后的三大长期转变

颠覆已成为各行各业的常态,但咨询行业的性质使其特别容易受到市场动态变化和宏观经济顺风的影响。 过去几年,经济不确定性、劳动力短缺和技术进步对所有行业都产生了重大影响,这些动态从根本上改变了专业服务公司的运营方式。 随着企业在快速变化的商业环境中重新评估其劳动力需求和企业优先级,其咨询需求也发生了巨大变化。

是什么阻碍了CIO制定AI战略?其中之一就是他们自己的AI学习曲线

许多CIO会向同行学习以了解更多关于AI的知识,但只有少数人认为其他CIO比自己懂得多,这个问题也许只有自我教育才能解决。 在企业内部部署AI的压力下,大多数CIO担心自己对这项快速变化的技术缺乏必要的了解。 在Salesforce调查的CIO中,超过五分之三的人表示,他们被期望对AI的了解超出自己的实际水平,这可能导致大规模的、代价高昂的部署错误。