自动提示词工程

OpenAI前研究者发布提示词工程框架ell,升级版LangChain,支持版本控制和多模态

LLM 喜欢赞美,如果你在提示词中夸奖它是个「才华横溢的专家(genius expert)」,它就更可能为你生成更好的答案。当然,OpenAI 的这位前研究科学家 William H. Guss 分享的这个技巧并不是新闻,之前就有不少研究者发现 AI 喜欢鼓励和赞美。刚不久前,Huss 宣布发布了一款自称是「提示词工程的未来」工具 ell。具体来说,ell 是一款轻量级的函数式语言模型编程软件库,其优势包括自动化的版本控制和跟踪、丰富的本地开源视觉化工具、原生支持多模态数据。项目地址:,网友们纷纷点赞。比如有一位网

还在人工炼丹?自动提示工程指南来了,还带从头实现

人工设计提示词太麻烦了!想过让 LLM 帮你设计用于 LLM 的提示词吗?近日,自称生成式 AI 黑带选手的谷歌研究者 Heiko Hotz 发布了一篇长文,详细介绍了自动提示词工程的概念、原理和工作流程,并通过代码从头实现了这一方法。自动提示词工程是什么?自动提示词工程(APE)是指自动生成和优化 LLM 提示词的技术,目标是提升模型在特定任务上的性能。其基于提示词工程的思路,即编写多个不同的提示词并对其进行测试,只不过是让整个过程自动化。后面我们会看到,这个过程非常类似于传统监督式机器学习中的自动超参数优化。本
  • 1