研究人员推出 xLSTM 神经网络 AI 架构:并行化处理 Token、有望迎战 Transformer

研究人员 Sepp Hochreiter 和 Jürgen Schmidhuber 在 1997 年共同提出了长短期记忆(Long short-term memory,LSTM)神经网络结构,可用来解决循环神经网络(RNN)长期记忆能力不足的问题。而最近 Sepp Hochreiter 在 arXiv 上发布论文,提出了一种名为 xLSTM(Extended LSTM)的新架构,号称可以解决 LSTM 长期以来“只能按照时序处理信息”的“最大痛点”,从而“迎战”目前广受欢迎的 Transformer 架构。IT之家

研究人员 Sepp Hochreiter 和 Jürgen Schmidhuber 在 1997 年共同提出了长短期记忆(Long short-term memory,LSTM)神经网络结构,可用来解决循环神经网络(RNN)长期记忆能力不足的问题。

而最近 Sepp Hochreiter 在 arXiv 上发布论文,提出了一种名为 xLSTM(Extended LSTM)的新架构,号称可以解决 LSTM 长期以来“只能按照时序处理信息”的“最大痛点”,从而“迎战”目前广受欢迎的 Transformer 架构。

研究人员推出 xLSTM 神经网络 AI 架构:并行化处理 Token、有望迎战 Transformer

IT之家从论文中获悉,Sepp Hochreiter 在新的 xLSTM 架构中采用了指数型门控循环网络,同时为神经网络结构引入了“sLSTM”和“mLSTM”两项记忆规则,从而允许相关神经网络结构能够有效地利用 RAM,实现类 Transformer“可同时对所有 Token 进行处理”的并行化操作。

研究人员推出 xLSTM 神经网络 AI 架构:并行化处理 Token、有望迎战 Transformer

团队使用了 150 亿个 Token 训练基于 xLSTM 及 Transformer 架构的两款模型进行测试,在评估后发现 xLSTM 表现最好,尤其在“语言能力”方面最为突出,据此研究人员认为 xLSTM 未来有望能够与 Transformer 进行“一战”。

参考

xLSTM: Extended Long Short-Term Memory

相关资讯

原作者带队,LSTM卷土重来之Vision-LSTM出世

与 DeiT 等使用 ViT 和 Vision-Mamba (Vim) 方法的模型相比,ViL 的性能更胜一筹。AI 领域的研究者应该还记得,在 Transformer 诞生后的三年,谷歌将这一自然语言处理届的重要研究扩展到了视觉领域,也就是 Vision Transformer。后来,ViT 被广泛用作计算机视觉中的通用骨干。这种跨界,对于前不久发布的 xLSTM 来说同样可以实现。最近,享誉数十年的 LSTM 被扩展到一个可扩展且性能良好的架构 ——xLSTM,通过指数门控和可并行化的矩阵内存结构克服了长期存在

原作者带队,LSTM真杀回来了!

LSTM:这次重生,我要夺回 Transformer 拿走的一切。20 世纪 90 年代,长短时记忆(LSTM)方法引入了恒定误差选择轮盘和门控的核心思想。三十多年来,LSTM 经受住了时间的考验,并为众多深度学习的成功案例做出了贡献。然而,以可并行自注意力为核心 Transformer 横空出世之后,LSTM 自身所存在的局限性使其风光不再。当人们都以为 Transformer 在语言模型领域稳坐江山的时候,LSTM 又杀回来了 —— 这次,是以 xLSTM 的身份。5 月 8 日,LSTM 提出者和奠基者 Se

直接扩展到无限长,谷歌Infini-Transformer终结上下文长度之争

不知 Gemini 1.5 Pro 是否用到了这项技术。谷歌又放大招了,发布下一代 Transformer 模型 Infini-Transformer。Infini-Transformer 引入了一种有效的方法,可以将基于 Transformer 的大型语言模型 (LLM) 扩展到无限长输入,而不增加内存和计算需求。使用该技术,研究者成功将一个 1B 的模型上下文长度提高到 100 万;应用到 8B 模型上,模型能处理 500K 的书籍摘要任务。自 2017 年开创性研究论文《Attention is All Yo