微软发布Phi-3,性能超Llama-3,可手机端运行

数据已成为提升大模型能力的重点。Llama-3 刚发布没多久,竞争对手就来了,而且是可以在手机上运行的小体量模型。本周二,微软发布了自研小尺寸模型 Phi-3。新模型有三个版本,其中 Phi-3 mini 是一个拥有 38 亿参数的语言模型,经过 3.3 万亿 token 的训练,其整体性能在学术基准和内部测试上成绩优异。尽管 Phi-3 mini 被优化至可部署在手机上,但它的性能可以与 Mixtral 8x7B 和 GPT-3.5 等模型相媲美。微软表示,创新主要在于用于训练的数据集。与此同时,Phi-3 与

数据已成为提升大模型能力的重点。

Llama-3 刚发布没多久,竞争对手就来了,而且是可以在手机上运行的小体量模型。

本周二,微软发布了自研小尺寸模型 Phi-3。

新模型有三个版本,其中 Phi-3 mini 是一个拥有 38 亿参数的语言模型,经过 3.3 万亿 token 的训练,其整体性能在学术基准和内部测试上成绩优异。

尽管 Phi-3 mini 被优化至可部署在手机上,但它的性能可以与 Mixtral 8x7B 和 GPT-3.5 等模型相媲美。微软表示,创新主要在于用于训练的数据集。

图片

与此同时,Phi-3 与 Llama-2 使用相同的架构,方便开源社区在其基础上开发。

图片

此前,微软的 Phi 系列模型曾经引发了人们的热议,去年 6 月,微软发布了《Textbooks Are All You Need》论文,用规模仅为 7B token 的「教科书质量」数据训练 1.3B 参数的模型 phi-1,实现了良好的性能。

去年 9 月,微软进一步探索这条道路,让 1.3B 参数的 Transformer 架构语言模型 Phi-1.5 显示出强大的编码能力。

去年底,微软提出的 Phi-2 具备了一定的常识能力,在 2.7B 的量级上多个基准测试成绩超过 Llama2 7B、Llama2 13B、Mistral 7B 等一众先进模型。

图片

Phi-3 技术报告:https://arxiv.org/abs/2404.14219

刚刚提出的 phi-3-mini 是一个在 3.3 万亿个 token 上训练的 38 亿参数语言模型。实验测试表明,phi-3-mini 的整体性能可与 Mixtral 8x7B 和 GPT-3.5 等模型相媲美,例如 phi -3-mini 在 MMLU 上达到了 69%,在 MT-bench 上达到了 8.38。

微软之前对 phi 系列模型的研究表明,高质量的「小数据」能够让较小的模型具备良好的性能。phi-3-mini 在经过严格过滤的网络数据和合成数据(类似于 phi-2)上进行训练,并进一步调整了稳健性、安全性和聊天格式。

此外,研究团队还提供了针对 4.8T token 训练的 7B 和 14B 模型的初始参数扩展结果,称为 phi-3-small 和 phi-3-medium,两者都比 phi-3-mini 能力更强。

图片

学术基准

在标准开源基准测试中,phi-3-mini 与 phi-2 、Mistral-7b-v0.1、Mixtral-8x7B、Gemma 7B 、Llama-3-instruct8B 和 GPT-3.5 的比较结果如下表所示,为了确保具有可比性,所有结果都是通过完全相同的 pipeline 得到的。

图片

安全性

Phi-3-mini 是根据微软负责任人工智能原则开发的。保证大模型安全的总体方法包括训练后的安全调整、红队(red-teaming)测试、自动化测试和数十个 RAI 危害类别的评估。微软利用受 [BSA+ 24] 启发修改的有用和无害偏好数据集 [BJN+ 22、JLD+ 23] 和多个内部生成的数据集来解决安全性后训练(post-training)的 RAI 危害类别。微软一个独立的 red team 反复检查了 phi-3-mini,以进一步确定后训练过程中需要改进的领域。 

根据 red team 的反馈,研究团队整理了额外的数据集从而完善后训练数据集。这一过程导致有害响应率显著降低,如图 3 所示。

图片

下表显示了 phi-3-mini-4k 和 phi-3-mini-128k 与 phi-2、Mistral-7B-v0.1、Gemma 7B 的内部多轮对话 RAI 基准测试结果。该基准测试利用 GPT-4 模拟五个不同类别的多轮对话并评估模型响应。

图片

缺陷

微软表示,就 LLM 能力而言,虽然 phi-3-mini 模型达到了与大型模型相似的语言理解和推理能力水平,但它在某些任务上仍然受到其规模的根本限制。例如,该模型根本没有能力存储太多「事实知识」,这可以从 TriviaQA 上的低评分中看出。不过,研究人员相信这些问题可以通过搜索引擎增强的方式来解决。

图片

参考内容:https://news.ycombinator.com/item?id=40127806

相关资讯

微软 CEO 纳德拉:Azure AI Studio 已支持提供 OpenAI GPT-4o API

感谢IT之家网友 我抢了台 的线索投递!5 月 22 日凌晨,微软 Build 2024 开发者大会于在美国西雅图召开,据微软公司 CEO、董事长萨提亚・纳德拉介绍,由 OpeanAI 开发的最新旗舰模型 GPT-4o,现已在 Azure AI Studio 中提供,并作为 API 提供。该多模态模型集成了文本、图像和音频处理能力,带来了全新的生成式和对话式 AI 体验。此外,由微软开发的 Phi-3 列 AI 小型语言模型 (SLM) 中的一种新型多模态模型 Phi-3-vision 现已在 Azure 中推出。

微软现支持开发者微调 Phi-3-mini 和 Phi-3-medium AI 模型

微软公司昨日(7 月 25 日)发布博文,宣布在 Azure 上支持开发者微调(fine-tune) Phi-3-mini 和 Phi-3-medium AI 模型,针对不同用例提高模型的性能。例如,开发者可以微调 Phi-3-medium 模型,用于辅导学生;或者可以根据特定的语气或响应风格构建聊天应用程序。Phi-3-mini 模型于今年 4 月发布,共有 38 亿参数,上下文长度有 4K 和 128K 两个版本;Phi-3-medium 模型共有 140 亿参数,上下文长度同样有 4K 和 128K 两个版本

微软发布 Phi-3.5 系列 AI 模型:上下文窗口 128K,首次引入混合专家模型

微软公司今天发布了 Phi-3.5 系列 AI 模型,其中最值得关注的是推出了该系列首个混合专家模型(MoE)版本 Phi-3.5-MoE。本次发布的 Phi-3.5 系列包括 Phi-3.5-MoE、Phi-3.5-vision 和 Phi-3.5-mini 三款轻量级 AI 模型,基于合成数据和经过过滤的公开网站构建,上下文窗口为 128K,所有模型现在都可以在 Hugging Face 上以 MIT 许可的方式获取。AI在线附上相关介绍如下:Phi-3.5-MoE:首个混合专家模型Phi-3.5-MoE 是