腾讯版Sora发布即开源!130亿参数,模型权重、推理代码全开放

130亿参数,成为目前参数量最大的开源视频生成模型。 模型权重、推理代码、模型算法等全部上传GitHub与Hugging Face,一点没藏着。 实际效果如何呢?

130亿参数,成为目前参数量最大的开源视频生成模型。模型权重、推理代码、模型算法等全部上传GitHub与Hugging Face,一点没藏着。

图片

实际效果如何呢?

不瞒你们说,我真的看见一只大熊猫,在跳广场舞、吃火锅、打麻将,请看VCR:

图片图片图片

到底是来自四川的猫!

目前该模型已上线腾讯元宝APP,用户可在AI应用中的“AI视频”板块申请试用。

API同步开放测试,开发者可通过腾讯云接入。

图片

腾讯混元视频生成主打四大特点:

  • 超写实画质,模型生成的视频内容具备高清质感、真实感,可用于工业级商业场景例如广告宣传、创意视频生成等商业应用。
  • 高语义一致,用户可以进行细致的刻画,例如生成主体的细节,人物概念的组合等。模型可以准确的表达出文本的内容。
  • 运动画面流畅,可生成大幅度的合理运动,运动镜头流畅、符合物理规律,不易变形。
  • 原生镜头转换,模型原生具备自动生成多视角同主体的镜头切换画面,增强画面叙事感。

那么实际表现能否符合描述?下面结合实例一一拆解。

实测腾讯首个文生视频模型

首先是冲浪题材,涉及到画面大幅度运动,水的物理模拟等难点。

提示词中还特别指定了摄像头的运动,腾讯混元表现出流畅运镜的能力,只是在“最后定格在…”这个要求上稍显不足。

提示词:超大海浪,冲浪者在浪花上起跳,完成空中转体。摄影机从海浪内部穿越而出,捕捉阳光透过海水的瞬间。水花在空中形成完美弧线,冲浪板划过水面留下轨迹。最后定格在冲浪者穿越水帘的完美瞬间。

图片

镜子题材,考验模型对光影的理解,以及镜子内外主体运动是否能保持一致。

提示词中的白床单元素又加大了难度,涉及到的布料模拟,也符合物理规律。

不过人们想象中的幽灵一般没有脚,AI似乎没学到,又或者是跳舞涉及大量腿部动作,产生了冲突。

穿着白床单的幽灵面对着镜子。镜子中可以看到幽灵的倒影。幽灵位于布满灰尘的阁楼中,阁楼里有老旧的横梁和被布料遮盖的家具。阁楼的场景映照在镜子中。幽灵在镜子前跳舞。电影氛围,电影打光。

图片

接下来是腾讯混元视频生成主推的功能之一,在画面主角保持不变的情况下自动切镜头,据了解是业界大部分模型所不具备的能力。

一位中国美女穿着汉服,头发飘扬,背景是伦敦,然后镜头切换到特写镜头。

腾讯版Sora发布即开源!130亿参数,模型权重、推理代码全开放

再来一个综合型的复杂提示词,对主角外貌、动作、环境都有细致描述,画面中还出现其他人物,腾讯混元表现也不错。

特写镜头拍摄的是一位60多岁、留着胡须的灰发男子,他坐在巴黎的一家咖啡馆里,沉思着宇宙的历史,他的眼睛聚焦在画外走动的人们身上,而他自己则基本一动不动地坐着,他身穿羊毛大衣西装外套,内衬系扣衬衫,戴着棕色贝雷帽和眼镜,看上去很有教授风范,片尾他露出一丝微妙的闭嘴微笑,仿佛找到了生命之谜的答案,灯光非常具有电影感,金色的灯光,背景是巴黎的街道和城市,景深,35毫米电影胶片。

图片

最后附上来自官方的写prompt小tips:

  • 用法1:提示词=主体+场景+运动
  • 用法2:提示词=主体(主体描述)+场景(场景描述)+运动(运动描述)+(镜头语言)+(氛围描述)+(风格表达)
  • 用法3:提示词=主体+场景+运动+(风格表达)+(氛围描述)+(运镜方式)+(光线)+(景别)
  • 多镜头生成:提示词=[场景1]+镜头切换到[场景2]
  • 两个动作生成:提示词=[主体描述]+[动作描述]+[然后、过了一会等连接词]+[动作描述2]

怎么样,你学会了吗?

更多腾讯混元生成的视频,以及与Sora同提示词PK,还可以看看量子位在内测阶段的尝试。

最大的开源视频生成模型。

看完效果,再看看技术层面有哪些亮点。

首先从官方评估结果看,混元视频生成模型在文本视频一致性、运动质量和画面质量多个维度效果领先。

图片

然后从目前公开资料看,腾讯混元视频生成模型还有三个亮点。

1、文本编码器部分,已经适配多模态大模型

当下行业中多数视觉生成模型的文本编码器,适配的主要是上一代语言模型,如OpenAI的CLIP和谷歌T5及各种变种。

腾讯在开源图像生成模型Hunyuan-DiT中适配的是T5和CLIP的结合,这次更进一步,直接升级到了新一代多模态大语言模型(Multimodal Large Language Model)。

由此能够获得更强大的语义跟随能力,体现在能够更好地应对画面中存在的多个主体,以及完成指令中更多的细节。

2、视觉编码器部分,支持混合图片/视频训练,提升压缩重建性能

视频生成模型中的视觉编码器,在压缩图片/视频数据,保留细节信息方面起着关键作用。

混元团队自研了3D视觉编码器支持混合图片/视频训练,同时优化了编码器训练算法,显著提升了编码器在快速运行、纹理细节上的压缩重建性能,使得视频生成模型在细节表现上,特别是小人脸、高速镜头等场景有明显提升。

3、从头到尾用full attention(全注意力)的机制,没有用时空模块,提升画面流畅度。

混元视频生成模型采用统一的全注意力机制,使得每帧视频的衔接更为流畅,并能实现主体一致的多视角镜头切换。

与“分离的时空注意力机制”分别关注视频中的空间特征和时间特征,相比之下,全注意力机制则更像一个纯视频模型,表现出更优越的效果。

更多细节,可以参见完整技术报告~

官网:https://aivideo.hunyuan.tencent.com

代码:https://github.com/Tencent/HunyuanVideo

模型:https://huggingface.co/tencent/HunyuanVideo

技术报告:https://github.com/Tencent/HunyuanVideo/blob/main/assets/hunyuanvideo.pdf

相关资讯

Llama 2 的入门与实战,机器之心邀请了 4 位技术大牛手把手教你

机器之能报道编辑:Sia「Llama 2 大模型算法与应用实践」-机器之心 AI 技术论坛将于 8 月 26 日在北京举办。如果要问「2023 年最火的动物是什么?」AI 圈外的人可能会回答「熊猫」,并给你列出一长串熊猫的名字。而 AI  圈内的人八成会回答「羊驼」。而且,他们也能给你列出一长串「羊驼」的名字:llama、vicuna、alpaca…… 得益于 Meta Llama 模型的开源,AI 社区的研究者对生物学羊驼属的英文单词已经如数家珍,每个单词都对应着一个(或一组)基于 Llama 的微调模型。这些模

Stable Diffusion 3 开源倒计时,2B 单机可跑碾压闭源 Midjourney

【新智元导读】重磅消息!Stable Diffusion 3,大概率会在明天开源。距离 2 月 SD3 的横空出世,已经过去了 4 个月。如果此事为真,生图圈子第一个出现开源碾压闭源的奇景!强大的 MMDiT 全新架构,将彻底改变 AI 生图的格局。现在,全体 AI 社区都在翘首以盼。万众瞩目的 Stable Diffusion 3,终于要正式开源了!几天前,在 Computex 2024 大会上,Stability AI 联合首席执行官 Christian Laforte 正式官宣:SD 3 Medium 将在

WOT大会日程上线:我们找来数十位大模型实践企业现身说法

这两天的技术圈里,估计大家都在摩拳擦掌等待体验OpenAI的GPT-4o(o为Omni缩写,意为“全能”)有多“全能”吧。我们无意给市场泼冷水,只是要提醒大家,想要让大模型真正落地,市场的热,并不意味着应用实践的成熟。尤其在企业级场景中,为什么大模型落地理想很丰满现实很骨感?为什么很少有企业能把大模型用在核心业务中?是不想用、还是用不好?在即将于6月21-22日在北京召开的WOT全球技术创新大会上,经过持续数月的发掘、走访、调研,我们找来了数十位已经在大模型应用上起跑并领先半个身位的实践企业,力求给你启发和答案。倾