主体一致性

视觉模型智能涌现后, Scaling Law 不会到头

Scaling Law 或将终结——这是最近备受热议的话题之一。 该讨论最初源自于哈佛大学一篇名为《Scaling Laws for Precision》的论文,其研究表明当下的语言模型在大量数据上经历了过度训练,继续叠加更多的预训练数据可能会产生副作用。 这释放的信号是:在自然语言处理领域, Scaling Law 目光所及地到达瓶颈,单纯依靠增加模型规模和数据量来提升性能的方法也许不再有效,低精度的训练和推理正在使模型性能提升的边际效益递减。
  • 1