业务
大模型的下一步:要高精尖,更要接地气
当下,AI 领域最热门的技术非大模型莫属。提到大模型,你也许会想到高参数、强算力、各种国际级的技术奖项和竞赛佳绩…… 让大家认为数据上的「大」和「强」,就是衡量大模型好坏的标准。
6年技术迭代,阿里全球化出海&合规的挑战和探索
全球化技术根植于全球化业务,经过五个阶段的演进,逐渐发展成为阿里巴巴集团内相对独立的技术体系。本文会首先重点讲解全球化基础设施层的挑战和技术实践。
阿里数据中台底座的12年建设实践
文/阿里云智能计算平台事业部研究员 关涛阿里巴巴数据平台发展的四大阶段构建数据中台,一个强大的数据平台作为底座必不可少。 阿里巴巴数据平台发展的四个阶段,一定程度上其实也是阿里巴巴数据中台发展的四个阶段。这四个阶段里,你可以看到阿里巴巴对自身数据的商业价值的萃取,对原有分而治之的数据系统的聚合,对计算数据资产化和数据高效应用的新思路以及对数据平台治理过程中面临的组织变革等。阶段一:业务百花齐放,发现数据价值2009年到2012年,阿里巴巴电商业务进入爆发期,涌现出非常多有名的业务团队,比如淘宝、1688、AliEx
DataWorks数据建模 - 一揽子数据模型管理解决方案
作者:DataWorks产品经理 刘天鸢在当下的商业环境中,正确的数据治理策略对于数据增值是非常重要的。据统计,企业的数据一直都在以每年50%的速度增长,因此企业数据治理与整合的难度就不断加大了。DataWorks一直以来都致力于成为用户更方便、更快捷地进行数据开发与数据治理的好帮手。此次发布的数据建模,是对已有数据治理领域能力的补齐,为用户带来了在数据开发前,实施事前治理的能力。一、为什么要数据建模引用《大数据之路:阿里巴巴大数据实践》中的内容:“如果把数据看作图书馆里的书,我们希望它们在书架上分门别类地放置;如
- 1