MD
2.5天完成1年的MD计算?DeepMind团队基于欧几里得Transformer的新计算方法
编辑 | 萝卜皮近年来,基于从头算参考计算的机器学习力场 (MLFF) 的开发取得了巨大进展。虽然实现了较低的测试误差,但由于担心在较长的模拟时间范围内会出现不稳定性,MLFF 在分子动力学 (MD) 模拟中的可靠性正面临越来越多的审查。研究表明,对累积不准确性的稳健性与 MLFF 中使用等变表示之间存在潜在联系,但与这些表示相关的计算成本可能会在实践中限制这种优势。为了解决这个问题,Google DeepMind、柏林工业大学(TU Berlin)的研究人员提出了一种名为 SO3krates 的 transfor
8/9/2024 5:23:00 PM
ScienceAI
- 1
资讯热榜
标签云
AI
模型
人工智能
AIGC
OpenAI
AI绘画
ChatGPT
机器人
数据
生成
训练
谷歌
视频
智能
学习
Midjourney
GPT
大模型
用户
AI创作
LLM
图像
微软
开源
技术
Meta
论文
Stable Diffusion
生成式
算法
蛋白质
芯片
马斯克
计算
神经网络
AI设计
Gemini
Sora
研究
腾讯
课程
代码
开发者
场景
3D
伟达
GPU
预测
模态
华为
Transformer
文本
驾驶
英伟达
神器推荐
机器学习
AI视频
语言
干货合集
深度学习
LLaMA
2024
算力
搜索
苹果
视频生成
科技
AI应用场景
应用
百度
写作
特斯拉
机器
安全
具身智能
Copilot
AI for Science
语音
prompt
视觉