结合

比传统方法高30倍,中国科学院团队Transformer深度学习模型预测糖-蛋白质作用位点

编辑 | 萝卜皮糖类是自然界中最丰富的有机物质,对生命至关重要。了解糖类如何在生理和病理过程中调节蛋白质,可以为解决关键的生物学问题和开发新的治疗方法提供机遇。然而,糖类分子的多样性和复杂性,对实验识别糖-蛋白质结合以及相互作用的位点提出了挑战。在这里,中国科学院团队开发了一种深度学习模型 DeepGlycanSite,它能够准确预测给定蛋白质结构上的糖结合位点。DeepGlycanSite 将蛋白质的几何和进化特征融入具有 Transformer 架构的深度等变图神经网络中,其性能显著超越了之前的先进方法,并能有

药物-靶标亲和力预测,上科大团队开发了一种Transformer编码器和指纹图谱相结合的方法

编辑 | 萝卜皮药物与靶标之间的结合亲和力的预测对于药物发现至关重要。然而,现有方法的准确性仍需提高。另一方面,大多数深度学习方法只关注非共价(非键合)结合分子系统的预测,而忽略了在药物开发领域越来越受到关注的共价结合的情况。上海科技大学的研究团队提出了一种新的基于注意力的模型,称为 TEFDTA (Transformer Encoder and Fingerprint combined Prediction method for Drug-Target Affinity),来预测键合和非键合药物-靶标相互作用的结
  • 1