大型视觉模型

多模态大模型技术方向和应用场景

多模态大模型(Multimodal Large Language Models,MLLM)是一种结合了大型语言模型(LLM)和大型视觉模型(LVM)的深度学习模型,它们能够处理和理解多种类型的数据,如文本、图像和音频,从而在跨模态任务中展现出卓越的性能。 核心特点对于多模态输入-文本输出的典型 MLLM,其架构一般包括编码器、连接器以及 LLM。 如要支持更多模态的输出(如图片、音频、视频),一般需要额外接入生成器,如下图所示:MLLM 架构图模态编码器负责将原始的信息(如图片)编码成特征,连接器则进一步将特征处理成LLM 易于理解的形式,即视觉 Token。
  • 1