全球AI顶会 NeurIPS 2024温哥华开幕,中国校企上百篇论文被收录

当地时间 12 月 10 日- 15 日,全球 AI 顶级会议 NeurIPS (神经信息处理系统大会)在加拿大温哥华举办,这一顶会涵盖了机器学习、深度学习、神经网络等多个研究方向。 官方数据显示, NeurIPS 2024 共收到 15671 篇有效论文投稿。 投稿量创下新高,论文录取率为 25.8%,相比去年略有下降,来自中国的被收录的论文则很可观。

当地时间 12 月 10 日- 15 日,全球 AI 顶级会议 NeurIPS (神经信息处理系统大会)在加拿大温哥华举办,这一顶会涵盖了机器学习、深度学习、神经网络等多个研究方向。

官方数据显示, NeurIPS 2024 共收到 15671 篇有效论文投稿。投稿量创下新高,论文录取率为 25.8%,相比去年略有下降,来自中国的被收录的论文则很可观。公开数据显示,中国人民大学、字节跳动、蚂蚁集团、腾讯等中国高校和互联网企业均分别有数十篇论文被NeurIPS 2024收录。

蚂蚁集团被 NeurIPS 2024 收录了20篇论文,其中有一篇为Spotlight(特别关注)。按往年数据估算,NeurIPS 的 Spotlight 论文录取率约为 3%。

被 Spotlight 的论文《MKGL:掌握一门三元组构成的语言》,引入一个叫 KGL的新知识图谱语言,以探究大语言模型(LLM)和知识图谱(KG)的融合。KGL 这一新语言能够让一个句子精确地由一个实体名词开始、一个关系动词连接,再以另一个实体名词结尾。实验结果显示,LLM 通过利用实时知识图谱上下文检索和文本嵌入增强,高效提升其对 KGL 词汇的理解,已经做到能够熟练掌握 KGL,在知识图谱补全等任务上相较于传统方法有显著提升。

根据论文摘要显示,蚂蚁集团20 篇论文的研究领域主要集中在提升 AI的经济性、可信性和效率上,这也是该企业重投 AI 的重点攻坚方向。

比如论文《重新审视显存和通信成本对大语言模型高效数据并行训练的影响》针对大语言模型(LLM)分布式训练的速度与效率问题,提出了一组新的基础策略,一个名为 PaRO 的部分冗余优化器,通过更精细的分片策略以适配不同的训练场景,加速 LLM 的训练。实验结果表明,PaRO 在 LLM 的一些训练场景下速度比 ZeRO-3 最快提高到 266 %。此外,PaRO-CC 也可以单独使用在模型并行策略中,且获得了17%的训练速度提升。

在 NeurIPS 2024 上,蚂蚁集团还受邀举办一场研讨会,围绕“强化学习优化、可信模型构建及视觉语言模型应用探索”等议题,深入研讨知识增强的大语言模型在行业垂直领域的前沿技术与发展趋势。来自清华大学、香港浸会大学、墨尔本大学、蚂蚁技术研究院的学者和研究员将在研讨会上进行主题报告分享。

据了解,加速 AI 在行业垂直领域的落地应用,亦是蚂蚁集团重投 AI 的重点攻坚方向,或者说,聚焦提升AI的经济性、可信性和效率,就是为了加速AI在行业垂直领域,尤其在金融、医疗、遥感等严谨产业中的落地应用。

2024•Inclusion外滩大会发布的《AI产业实践六大趋势》指出,大模型在医疗、金融等专业领域应用涌现,能促进垂直行业生产力提升、数据价值释放,同时也成为大模型技术加速发展的“探照灯”。

值得注意的是,在 NeurIPS 这一级别的国际顶级学术会议上,来自国内高校、科技企业、互联网公司的论文不但在数量上持续突破,在质量上也有飞跃式进展,被收录为Spotlight、Oral、Highlight、Best Paper提名的论文越来越多。期待中国的产学界继续发力与合力,勇登这波 AI 浪潮之巅。

 

相关资讯

大咖云集,看点前瞻:蚂蚁集团主办CNCC2023五大论坛

2023 年 10 月 26-28 日,第二十届中国计算机大会(CNCC2023)将于沈阳举行。CNCC 由中国计算机学会(CCF)主办,是计算领域学术、技术、产业、教育各界宏观探讨发展趋势的年度盛会,为展示学术成果与技术创新搭建平台,促进各界交流合作,加快科研成果转换。本届 CNCC2023 大会以“发展数字基础设施,支撑数字中国建设”为主题,线下参会人数预计达万人。蚂蚁集团作为本次大会合作单位将主办五大论坛,重点关注数据安全与产学研深度融合,邀请多位学者专家到场分享,洞见计算领域新技术,共话数字发展新态势。论坛

大幅提升用户行为表征通用性,蚂蚁新模型获CIKM 2023最佳应用论文奖

由美国计算机学会 ACM 主办的 CIKM 2023 学术会议在英国伯明翰举行,大会吸引了 8000 学术从业者参加,并从 235 篇应用研究方向(applied research track)的投稿论文中,评选出了本届最佳应用论文奖,来自蚂蚁集团的用户行为表征模型研究论文获得了该奖项。用户行为表征建模和现在大家熟知的语言模型有很多相似之处,都是从海量的数据中,通过神经网络模型对序列数据进行表征,不同之处在于前者是对用户行为序列进行学习,后者是对语言序列进行学习。那该论文中的用户行为表征模型有什么独特之处呢?目前

专为数据库打造:DB-GPT用私有化LLM技术定义数据库下一代交互方式

DB-GPT 简化了这些基于大型语言模型 (LLM) 和数据库的应用程序的创建。2023 年 6 月,蚂蚁集团发起了数据库领域的大模型框架 DB-GPT。DB-GPT 通过融合先进的大模型和数据库技术,能够系统化打造企业级智能知识库、自动生成商业智能(BI)报告分析系统(GBI),以及处理日常数据和报表生成等多元化应用场景。DB-GPT 开源项目发起人陈发强表示,“凭借大模型和数据库的有机结合,企业及开发者可以用更精简的代码来打造定制化的应用。我们期望 DB-GPT 能够构建大模型领域的基础设施,让围绕数据库构建大