克服机器学习转换器的局限性——从位置嵌入到RoPE和ALiBi方法
译者 | 朱先忠审校 | 重楼引言近年来开发出的机器学习模型的指数级进步与转换器架构的出现密切相关。 以前,人工智能科学家必须先为手头的每项任务选择架构,然后再进行超参数优化以获得最佳性能。 限制科学家们潜力的另一个挑战是难以处理数据的长期依赖性,难以解决梯度消失、长序列上下文丢失以及因局部约束而无法捕获全局上下文的问题。- 968
- 0
正弦算法
❯
个人中心
今日签到
搜索
扫码打开当前页
返回顶部
幸运之星正在降临...
点击领取今天的签到奖励!
恭喜!您今天获得了{{mission.data.mission.credit}}积分
我的优惠劵
- ¥优惠劵使用时效:无法使用使用时效:
之前
使用时效:永久有效优惠劵ID:×
没有优惠劵可用!