-
AI成像新时代,视野扩大271倍,上海理工大学开发超快卷积光学神经收集
编辑 | KX卷积神经收集(CNN)凭借其出色的图象识别能力,在人工智能范畴表现出色,尤其是在 ChatGPT 等平台中。近日,上海理工大学团队成功将 CNN 概念引入光学范畴,完成卷积全光神经收集,为人工智能成像技术带来了革命性的进步。钻研团队开发了一种超快卷积光学神经收集(ONN),该收集无需依赖光学影象效应,即可完成对散射介质后方物体的高效清晰成像。该神经收集利用强散射过程直接提取特征,完成…- 4
- 0
-
光芯片能否代替电子芯片?破解 AI 「算力荒」
编辑 | ScienceAI摩尔定律的描述已经非常快了——盘算机芯片每两年左右就会安装两倍数量的晶体管,从而在速度和服从上产生重大飞跃。但深度学习时代的盘算需求增长速度更快——这种速度可能不可持续。论文链接:,2026 年人工智能消耗的电力将是 2023 年的 10 倍,而当年的数据中心消耗的能源将相当于日本一个国家一年的能源消耗。报告链接:「人工智能所需的[盘算能力]每三个月就会翻一番,速度远远…- 5
- 0
-
搜集规模、训练进修速度提升,清华团队在大规模光电智能估计方向取得进展
编辑 | 紫罗随着大模型等人为智能技术的突破与发展,算法复杂度剧增,对传统估计芯片带来了算力和功耗的双重挑战。近年来,以光估计为基础、通过光电融合的方式构建光电神经搜集的估计处理方法已经成为国际热点钻研问题,有望完成估计性能的颠覆性提升。然而,光电神经搜集的前向数学模型由对光场的精准物理建模得到,估计复杂度高、参数冗余度大;其进修机制沿用人为神经搜集常用的梯度下降算法,面向大规模光电神经搜集时优化…- 7
- 0
❯
个人中心
今日签到
搜索
扫码打开当前页
返回顶部
幸运之星正在降临...
点击领取今天的签到奖励!
恭喜!您今天获得了{{mission.data.mission.credit}}积分
我的优惠劵
-
¥优惠劵使用时效:无法使用使用时效:
之前
使用时效:永久有效优惠劵ID:×
没有优惠劵可用!