改进份子表征进修,清华团队提出学问诱导的图 Transformer 预训练框架
编辑 | 紫罗进修有效的份子特性表征以促进份子特性预计,对于药物发现具有重要意义。最近,人们通过自监视进修技术预训练图神经网络(GNN)以克服份子特性预计中数据稀缺的挑衅。然而,当前鉴于自监视进修的要领存在两个主要障碍:缺乏明确的自监视进修策略和 GNN 的能力有限。近日,来自清华大学、西湖大学和之江实验室的研讨团队,提出了学问诱导的图 Transformer 预训练(Knowledge-guid…- 7
- 0
KPGT
❯
个人中心
今日签到
搜索
扫码打开当前页
返回顶部
幸运之星正在降临...
点击领取今天的签到奖励!
恭喜!您今天获得了{{mission.data.mission.credit}}积分
我的优惠劵
- ¥优惠劵使用时效:无法使用使用时效:
之前
使用时效:永久有效优惠劵ID:×
没有优惠劵可用!