-
抗体亲和力增强17倍,百奥几何、复旦团队AI方法模拟细微蛋白质互作,登Nature子刊
编辑 | 萝卜皮提高抗体与其靶抗原的结合亲和力是抗体疗法开发中的关键任务。复旦大学与百奥几何(BioGeometry)团队联合推出了一种可预训练的几何图神经网络 GearBind,展示了其在抗体亲和力成熟中的潜力。通过多关系图构建、几何消息传递和大规模未标记蛋白质数据的预训练,GearBind 在多个测试集上的表现优于现有方法。研究人员基于 GearBind 推导出一个强大的集成模型,成功用于增强…- 5
- 0
-
DeepMind蛋白质设计新工具AlphaProteo,从头设计高亲和力蛋白结合剂,成功率最高88%
编辑 | ScienceAI像 AlphaFold 这样的蛋白质结构预测工具,已经帮助我们深入了解了蛋白质如何相互作用从而发挥其功能,但这些工具无法创建新的蛋白质来直接控制这些相互作用。现在,Google DeepMind 团队推出了一种用于设计「与目标分子结合更紧密」的新型蛋白质的 AI 系统 AlphaProteo。在测试的 7 种靶蛋白上,AlphaProteo 的实验成功率更高,在湿实验室…- 73
- 0
-
从头设计抗体,腾讯、北大团队预训练大语言模型登Nature子刊
编辑 | KXAI 技术在辅助抗体设计方面取得了巨大进步。然而,抗体设计仍然严重依赖于从血清中分离抗原特异性抗体,这是一个资源密集且耗时的过程。为了解决这个问题,腾讯 AI Lab、北京大学深圳研究生院和西京消化病医院研究团队提出了一种预训练抗体生成大语言模型 (PALM-H3),用于从头生成具有所需抗原结合特异性的人工抗体 CDRH3,减少对天然抗体的依赖。此外,还设计了一个高精度的抗原-抗体结…- 9
- 0
-
登Science,药物亲和力增加37倍,AI对蛋白、抗体复合物进行无监督优化
编辑 | 萝卜皮蛋白质参与了细胞组成、肌肉收缩、消化食物、识别病毒等众多生物学功能。为了设计出更好的蛋白质(包括抗体),科学家经常在不同位置反复变异氨基酸(按一定顺序排列组成蛋白质的单位),直到使蛋白质获得所需要的功能。但氨基酸序列的数量比世界上的沙粒还要多,因此找到最佳蛋白质,进而找到最佳潜在药物,通常难度巨大。当面临这一挑战时,科学家通常会花费数百万美元,并在微型化、简化版的生物系统中进行测试…- 3
- 0
-
里程碑时刻!David Baker 团队利用 AI 重新计划抗体
抗体(粉色)与流感病毒卵白(黄色)分离(艺术构思)。(来源:Juan Gaertner/Science Photo Library)编辑 | X改进的卵白质计划东西可以更轻松地解决具有挑战性的药物靶点,但 AI 抗体距离进入临床还有很长的路要走。华盛顿大学 David Baker 团队最新研讨又来了。Baker 团队对其去年公布的 AI 东西 RFdiffusion 进行了改进。首次应用生成式 A…- 2
- 0
-
用于抗体设想的深度生成蛋白谈话模型
编辑 | 萝卜皮用于医治运用的单克隆抗体的发现和优化依赖于大型序列库,但受到低溶解度、低热稳定性、高聚集和高免疫原性等可开发性问题的阻碍。在数百万个蛋白质序列上训练的生成谈话模型是按需生成逼真、多样化序列的强大工具。约翰霍普金斯大学的科学家和工程师团队提出了免疫球蛋白谈话模型 (IgLM),这是一种深度生成谈话模型,用于通过重新设想可变长度的抗体序列跨度来创建分解库。IgLM 将抗体设想制定为基于…- 7
- 0
❯
个人中心
今日签到
搜索
扫码打开当前页
返回顶部
幸运之星正在降临...
点击领取今天的签到奖励!
恭喜!您今天获得了{{mission.data.mission.credit}}积分
我的优惠劵
-
¥优惠劵使用时效:无法使用使用时效:
之前
使用时效:永久有效优惠劵ID:×
没有优惠劵可用!