准确率87.6%,南农、国防科大、苏大等发布显微图像分类AI新方法
编辑 | 萝卜皮在医学显微图像分类(MIC)领域,基于 CNN 和 Transformer 的模型得到了广泛的研究。然而,CNN 在建模长距离依赖关系方面存在短板,限制了其充分利用图像中语义信息的能力。相反,Transformer 受到二次计算复杂性的制约。为了解决这些挑战,南京农业大学、国防科技大学、湘潭大学、南京邮电大学、苏州大学组成的联合研究团队提出了一个基于 Mamba 架构的模型:Mic…- 24
- 0
局部
❯
个人中心
今日签到
搜索
扫码打开当前页
返回顶部
幸运之星正在降临...
点击领取今天的签到奖励!
恭喜!您今天获得了{{mission.data.mission.credit}}积分
我的优惠劵
- ¥优惠劵使用时效:无法使用使用时效:
之前
使用时效:永久有效优惠劵ID:×
没有优惠劵可用!