让模型预见分布漂移:动态系统颠覆性设计引领时域泛化新革命
在实际应用中,数据集的数据分布往往随着时间而不断变化,预测模型需要持续更新以保持准确性。 时域泛化旨在预测未来数据分布,从而提前更新模型,使模型与数据同步变化。 然而,传统方法假设领域数据在固定时间间隔内收集,忽视了现实任务中数据集采集的随机性和不定时性,无法应对数据分布在连续时间上的变化。- 976
- 0
阿里提出结构保持的AI视觉算法:显著提升HDR图像转LDR图像质量
9月21日,记者在2024云栖大会上获悉,阿里巴巴达摩院计算技术实验室提出了一种基于结构保持网络的AI视觉算法,可将高动态范围(HDR)场景图像自动转换为低动态范围(LDR)图像并保持其纹理细节,在常规显示设备上的图像质量相比业界提升7%。HDR图像同时包含强光源照射下的极亮区域和阴影、逆光下的极暗区域,容易出现明亮区域过曝、或者黑暗区域纯黑的情况,必须经过宽动态技术处理才能适配常规显示设备。传统…- 2
- 0
中国科学院开发出基于语义记忆的动态神经网络:相比静态最高减少 48.1% 计算量
中国科学院微电子研究所等将人工神经网络与大脑的动态可重构性相结合,开发出基于语义记忆的动态神经网络。▲ 基于语义记忆的脑启发动态神经网络硬件软件协同设计大脑神经网络具有复杂的语义记忆和动态连接性,可将不断变化的输入与庞大记忆中的经验联系起来,高效执行复杂多变的任务。目前,人工智能系统广泛应用的神经网络模型多是静态的。随着数据量不断增长,它在传统数字计算系统中产生大量能耗和时间开销,难以适应外界环境…- 37
- 0
动态
×
×
搜索一下可能来得更快
×
×
¥undefined
请打开手机使用微信扫码支付
「」
×
....支付确认中....
「」
×
支付金额
¥
undefined
×
检测到您未绑定微信账户,请先绑定微信
立刻绑定 ×
打开微信扫一扫
扫码并「关注我们的公众号」安全快捷登录
×
为了确保您的账户安全
请您设置一个登录用户名和密码
请您设置一个登录用户名和密码
个人中心
今日签到
搜索
扫码打开当前页
返回顶部