心脏是人体最神奇的器官,它的腔室能长期均匀地泵动,材料柔韧,可按需收缩。这是一个布局奇迹 —— 然而,当心脏出现问题时,其固有的复杂性使其成为修复的真正挑战。因此,成千上万的先天性心脏病年轻患者必须终生应对这类疾病。
斯坦福大学生物工程助理教授 Mark Skylar-Scott 表示「小儿心脏病是美国最常见的先天性疾病之一。这给患者家庭带来巨大的困难。一些步骤能够通过手术延长儿童的生命,但这些孩子仍然会受到活动限制,过着充满不确定性的生活。只有以某种方式替换受损或畸形的构造,才能获得真正治愈的解决方案。」
斯坦福大学生物工程助理教授 Mark Skylar-Scott
这正是 Skylar-Scott 的研讨内容,他正在研讨通过在实验室中构建工程心脏构造来治疗先天性心脏病的新步骤。Skylar-Scott 指出,这不仅仅是在造就皿中造就细胞。大多数现有技术将心脏细胞或干细胞植入临时「支架」:一种多孔的海绵状物质,可以将细胞固定在三个维度内。尽管这类步骤可以让研讨人员在实验室造就构造,但这类步骤只适用于极薄的细胞层。
「如果你的支架只有几个细胞厚,你就可以把细胞放在错误的位子。但是,如果你尝试造就一厘米厚的东西,则很难在错误的位子造就细胞,使其可以发展构造,这样一来就很难让细胞保持活力。」Skylar-Scott 补充说,人体器官也不是单一的细胞球,每个器官都由多种细胞典型的复杂层组成,孕育发生的 3D 布局难以复制。
打印类器官
为了解决器官发展问题,Skylar-Scott 团队使用先进的 3D 打印技术,他们一次制造一层厚构造,并将所需细胞搁置在错误位子。Skylar-Scott 指出,这类构造步骤非常适合复制心脏等复杂构造,其中 3D 形式非常重要。
尽管前景广阔,但细胞 3D 打印也带来了一些深刻而棘手的挑战。与消费类 3D 打印机可以加热并挤压无数形状的材料不同,细胞是有生命的,且非常脆弱。
Skylar-Scott 表示「如果你尝试一次只搁置一个细胞,打印肝脏或心脏可能需求数百年或数千年的时间。即使你每秒搁置 1000 个细胞,你仍然需求搁置数十亿个细胞才能得到一个器官。」
相反,Skylar-Scott 团队正在通过搁置称为「类器官」的密集细胞团块来加快打印过程。该小组通过将转基因干细胞放入离心机中孕育发生团块,从而孕育发生糊状物质。使用这类混合物,他们能够同时将大量细胞打印成凝胶状 3D 布局。通过打印这些类器官来实现器官的大规模布局。
细胞编程
然而,将干细胞放在错误的位子只是第一步。一旦它们被打印出来,研讨人员必须以某种方式使它们分化成更一定的细胞典型,形成一个类似于健康器官构造的多层工作细胞群簇。为了做到这一点,Skylar-Scott 将干细胞浸泡在化学混合物中。
每一种干细胞都经过基因工程改造,可以对一定药物孕育发生反应,一旦它们感觉到这类药物,这些干细胞就会分化成一定的细胞典型。一些细胞被编程成为心肌细胞,即形成心脏核心功能构造的心脏细胞。其他则编程成为基质细胞,将构造粘合在一起。
Skylar-Scott 在一个智能手机大小的生物反应器中测试打印出来的构造,这有助于保持打印细胞存活。研讨团队在生物反应器中培育出了一个类似器官布局:一个大约 2 英寸长、直径半厘米的管子,就像人体内的静脉一样,这类微型装置可以自行泵送、收缩和扩张以使液体通过自身。
扩展
Skylar-Scott 很快意识到应该打印一个更大的布局,比如可移植到现有心脏上的功能性腔室,但仍然有很长的路要走。这类设想意味需求比实验性静脉泵的大小增加 16 倍。为了生产出更接近那个大小的东西,一个全新的器官,实验室需求极大地扩大细胞生产。
Skylar-Scott 说:「扩大人造心脏的规模只需求建造一台更大的打印机,其中的关键仍是细胞本身。」
「现在,需求一个月的时间才能造就出足够的细胞来打印一些微小的东西,但成本也非常昂贵,每次测试都需求数万美元。我们需求想办法改造细胞,使它们更健壮,发展成本更低。一旦新细胞的管道到位,我认为我们将开始看到一些令人难以置信的进展。」Skylar-Scott 表示。
原文链接:https://news.stanford.edu/2022/03/14/building-heart-one-layer-time/