开源!上海AI Lab视频生成大模型书生·筑梦 2.0来了

AIxiv专栏是AI在线发布学术、技术内容的栏目。过去数年,AI在线AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected]近日,上海人工智能实验室推出新一代视频生成大模型 “书生・筑梦 2.0”(Vchitect 2.0)。根据官方介绍,书生・筑梦 2.0 是集文生视频、图生视频、插帧超分、训练系统一体化的视

开源!上海AI Lab视频生成大模型书生·筑梦 2.0来了

AIxiv专栏是AI在线发布学术、技术内容的栏目。过去数年,AI在线AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected]

近日,上海人工智能实验室推出新一代视频生成大模型 “书生・筑梦 2.0”(Vchitect 2.0)。根据官方介绍,书生・筑梦 2.0 是集文生视频、图生视频、插帧超分、训练系统一体化的视频生成大模型。

开源!上海AI Lab视频生成大模型书生·筑梦 2.0来了

主页:https://vchitect.intern-ai.org.cn/

Github: https://github.com/Vchitect/Vchitect-2.0开源!上海AI Lab视频生成大模型书生·筑梦 2.0来了

本文将详细介绍筑梦 2.0 背后的核心亮点与技术细节。

核心亮点

1、 支持更长的视频生成:

目前来看,筑梦 2.0 支持 5s-20s 长视频生成,超过其他开源模型的生成时长。开源!上海AI Lab视频生成大模型书生·筑梦 2.0来了开源!上海AI Lab视频生成大模型书生·筑梦 2.0来了同时支持高达 720×480 分辨率的生成。该模型还能够处理多种视频格式,包括横屏、竖屏、4:3、9:16 和 16:9 等比例,极大地扩展了其应用场景。 开源!上海AI Lab视频生成大模型书生·筑梦 2.0来了开源!上海AI Lab视频生成大模型书生·筑梦 2.0来了

2. 新一代视频增强算法 VEnhancer

与其他开源模型不同,筑梦 2.0 同步开源了用于视频增强的生成式模型 ——VEnhancer,集成了插帧、超分辨率和修复功能。该增强算法可在 2K 分辨率、24fps 的情况下生成更加清晰、流畅的视频,解决了视频抖动等常见问题,显著提升了视频的稳定性。开源!上海AI Lab视频生成大模型书生·筑梦 2.0来了此外,该算法还可用于增强其他生成模型的视频表现,GitHub 中展示了它对快手可灵生成视频的显著改进,对于追求高质量内容输出的创作者来说,VEnhancer 无疑是一个重要的工具。

3. 全球首个支持长视频生成评测的框架

该在原有的 VBench 评测框架基础上,优化并升级了对长视频生成的评测能力,目前已包含 Gen-3、可灵、OpenSora 等主流模型。这使开发者和用户能够更系统地评估模型性能,尤其是在长视频生成方面。书生・筑梦 2.0 在开源 2B 模型中表现卓越,性能甚至可以媲美开源最优的 5B 模型。

筑梦 2.0 技术解析

1、模型架构根据开源代码分析,书生・筑梦 2.0 采用了时下热门的扩散式 Transformer(Diffusion Transformer)网络模型。不同于 CogVideoX 的全注意力机制,筑梦 2.0 通过并行结构的 Transformer 模块处理视频的空间和时间信息,包括自注意力(self-attention)、交叉注意力(cross-attention)和时间注意力(temporal-attention)。开源!上海AI Lab视频生成大模型书生·筑梦 2.0来了具体来说,自注意力模块负责每一帧之间的 token 交互,交叉注意力则使用所有帧的 token 作为查询,文本 token 作为键和值,而时间注意力则在不同帧的相同位置之间执行 token 的注意力操作。最终,模型通过线性层融合自注意力和交叉注意力的输出,再与时间注意力的结果相加,从而实现高效的视频生成任务处理。2、训练框架此外,书生・筑梦 2.0 同时开源了他们的训练和推理框架 LiteGen。从改框架的优化介绍上看,该框架针对性地提供了 diffusion 任务所需的各项优化。开源!上海AI Lab视频生成大模型书生·筑梦 2.0来了对于如何进一步优化显存以支持更大序列长度的训练这一方面,他们的开源代码采用了 Activation Offload 与 Sequence Parallel 技术进行优化。在实现上,他们的 Activation Offload 在计算时将暂未使用的中间激活 offload 到 CPU 内存上,需要时再拷贝到显存中,这样可以让 GPU 显存中尽量只留有当前计算所必须的激活,减少了显存峰值使用量。从开源代码的分析开看,他们采用了通信计算重叠的方式实现 Activation Offload,这将有助于降低设备间拷贝通信对整体性能的影响。据其开源代码的说明描述,在 A100 GPU 上,采用 Activation Offload 让筑梦 2.0 的 2B 模型单卡序列长度提升了 42%;进一步应用 Sequence Parallel 拓展至 8 卡,最大序列长度提升 8.6 倍,可以满足分钟级视频生成训练的计算需求。开源!上海AI Lab视频生成大模型书生·筑梦 2.0来了从其代码实现上来看,他们的框架设计得较为轻量,使用接口简洁,可以在改动比较小的情况下集成框架内的各项优化,在易用性上具有不错的优势。开源!上海AI Lab视频生成大模型书生·筑梦 2.0来了团队介绍上海人工智能实验室的书生·筑梦团队由来自上海人工智能实验室和新加坡南洋理工大学S-Lab的成员组成,专注于视频生成技术的前沿研究与应用开发。他们致力于通过创新的算法和架构优化,提升视频生成模型的质量和效率。近期,他们的工作包括VBench、VideoBooth 、FreeU、FreeInit、Latte 、VEnhancer等,这些项目在视频生成、插帧、超分辨率处理以及生成质量评估等多个关键领域都取得了显著进展。

给TA打赏
共{{data.count}}人
人已打赏
应用

英伟达 Jim Fan:复刻NLP的成功路,用通用模型开启具身智能的GPT-3时刻

2024-9-23 11:49:00

应用

钉钉推出 365 会员产品:提供个性化 AI 助理等,连续包月 15 元

2024-9-23 14:35:14

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
今日签到
搜索