OpenAI 推出 SWE-bench Verified 基准,更准确评估 AI 模型代码生成表现

感谢OpenAI 公司于 8 月 13 日发布新闻稿,宣布推出 SWE-bench Verified 代码生成评估基准,解决了此前的局限性问题,能够更准确地评估人工智能模型在软件工程任务中的表现。SWE-benchAI在线注:SWE-Bench 是一个用于评估 LLM 解决 GitHub 上真实软件问题能力的基准测试数据集。它收集了来自 12 个流行的 Python 仓库的 2294 个 Issue-Pull Request 对。在测试时,LLM 会拿到一个代码库和 issue 描述,然后生成一个补丁来解决 iss

感谢OpenAI 公司于 8 月 13 日发布新闻稿,宣布推出 SWE-bench Verified 代码生成评估基准,解决了此前的局限性问题,能够更准确地评估人工智能模型在软件工程任务中的表现。

SWE-bench

AI在线注:SWE-Bench 是一个用于评估 LLM 解决 GitHub 上真实软件问题能力的基准测试数据集。

它收集了来自 12 个流行的 Python 仓库的 2294 个 Issue-Pull Request 对。在测试时,LLM 会拿到一个代码库和 issue 描述,然后生成一个补丁来解决 issue 描述的问题。

该基准使用两种类型的测试:

FAIL_TO_PASS 测试用于检查问题是否已得到解决

PASS_TO_PASS 测试用于确保代码更改不会破坏现有功能。

SWE-bench 的问题

OpenAI 指出了 SWE-bench 的三个主要问题:

单元测试过于严格:用于评估解决方案正确性的单元测试往往过于具体,有时甚至与问题无关,这可能导致拒绝正确的解决方案。

问题描述不明确:许多样本的问题描述不够具体,导致问题是什么以及应如何解决含糊不清。

开发环境难以设置:有时很难可靠地为代理设置 SWE-bench 开发环境,从而无意中导致单元测试失败。

SWE-bench Verified

SWE-bench Verified 的主要改进之一是使用容器化 Docker 环境开发了新的评估工具包。

这一改进旨在使评估过程更加一致和可靠,降低与开发环境设置相关的问题发生的可能性。

例如,GPT-4o 解决了 33.2% 的样本,而表现最佳的开源代理框架 Agentless 的得分翻了一番,达到 16%。

性能的提高表明,SWE-bench Verified 更好地捕捉到了人工智能模型在软件工程任务中的真正能力。

给TA打赏
共{{data.count}}人
人已打赏
应用

苹果 Apple Intelligence 被挖出重大安全缺陷,几行代码即可攻破

2024-8-15 12:59:39

应用

ACL主席:ACL不是AI会议

2024-8-15 14:43:00

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
今日签到
搜索