你的GPU能跑Llama 2等大模型吗?用这个开源项目上手测一测

你的 GPU 内存够用吗?这有一个项目,可以提前帮你审查。在算力为王的时代,你的 GPU 可以顺畅的运行大模型(LLM)吗?对于这一问题,很多人都难以给出确切的回答,不知该如何计算 GPU 内存。因为审查 GPU 可以解决哪些 LLM 并不像审查模型大小那么容易,在推理期间(KV 缓存)模型会占用大量内存,例如,llama-2-7b 的序列长度为 1000,需要 1GB 的额外内存。不仅如此,模型在训练期间,KV 缓存、激活和量化都会占用大量内存。我们不禁要问,能不能提前了解上述内存的占用情况。近几日,GitHub

你的 GPU 内存够用吗?这有一个项目,可以提前帮你审查。

在算力为王的时代,你的 GPU 可以顺畅的运行大模型(LLM)吗?

对于这一问题,很多人都难以给出确切的回答,不知该如何计算 GPU 内存。因为审查 GPU 可以解决哪些 LLM 并不像审查模型大小那么容易,在推理期间(KV 缓存)模型会占用大量内存,例如,llama-2-7b 的序列长度为 1000,需要 1GB 的额外内存。不仅如此,模型在训练期间,KV 缓存、激活和量化都会占用大量内存。

我们不禁要问,能不能提前了解上述内存的占用情况。近几日,GitHub 上新出现了一个项目,可以帮你计算在训练或推理 LLM 的过程中需要多少 GPU 内存,不仅如此,借助该项目,你还能知道详细的内存分布情况、评估采用什么的量化要领、解决的最大上下文长度等问题,从而帮助用户选择适合自己的 GPU 摆设。

你的GPU能跑Llama 2等大模型吗?用这个开源项目上手测一测

项目地址:https://github.com/RahulSChand/gpu_poor

不仅如此,这个项目还是可交互的,如下所示,它能计算出运行 LLM 所需的 GPU 内存,简单的就像填空题一样,用户只需输出一些必要的参数,最后点击一下蓝色的按钮,答案就出来了。

你的GPU能跑Llama 2等大模型吗?用这个开源项目上手测一测

交互地址:https://rahulschand.github.io/gpu_poor/

最终的输出形式是这样子的:

{
  "Total": 4000,
  "KV Cache": 1000,
  "Model Size": 2000,
  "Activation Memory": 500,
  "Grad & Optimizer memory": 0,
  "cuda + other overhead":  500
}

至于为什么要做这个项目,作家 Rahul Shiv Chand 表示,有以下原因:

在 GPU 上运行 LLM 时,应该采用什么的量化要领来适应模型;

GPU 可以解决的最大上下文长度是多少;

什么样的微调要领比较适合自己?Full? LoRA? 还是 QLoRA?

微调期间,可以运用的最大 batch 是多少;

到底是哪项任务在消耗 GPU 内存,该如何调整,从而让 LLM 适应 GPU。

那么,我们该如何运用呢?

首先是对模型名称、ID 以及模型尺寸的解决。你可以输出 Huggingface 上的模型 ID(例如 meta-llama/Llama-2-7b)。目前,该项目已经硬编码并保存了 Huggingface 上下载次数最多的 top 3000 LLM 的模型摆设。

如果你运用自定义模型或 Hugginface ID 不可用,这时你需要上传 json 摆设(参考项目示例)或仅输出模型大小(例如 llama-2-7b 为 70 亿)就可以了。

接着是量化,目前该项目支持 bitsandbytes (bnb) int8/int4 以及 GGML(QK_8、QK_6、QK_5、QK_4、QK_2)。后者仅用于推理,而 bnb int8/int4 可用于训练和推理。

最后是推理和训练,在推理过程中,运用 HuggingFace 实现或用 vLLM、GGML 要领找到用于推理的 vRAM;在训练过程中,找到 vRAM 进行全模型微调或运用 LoRA(目前项目已经为 LoRA 摆设硬编码 r=8)、QLoRA 进行微调。

不过,项目作家表示,最终结果可能会有所不同,具体取决于用户模型、输出的数据、CUDA 版本以及量化工具等。实验中,作家试着把这些因素都考虑在内,并确保最终结果在 500MB 以内。下表是作家交叉检查了网站提供的 3b、7b 和 13b 模型占用内存与作家在 RTX 4090 和 2060 GPU 上获得的内存比较结果。所有值均在 500MB 以内。

你的GPU能跑Llama 2等大模型吗?用这个开源项目上手测一测

感兴趣的读者可以亲自体验一下,假如给定的结果不准确,项目作家表示,会对项目进行及时优化,完善项目。

给TA打赏
共{{data.count}}人
人已打赏
工程

在视觉提示中加入「标志」,微软等让GPT-4V看的更准、分的更细

2023-10-23 16:00:00

工程

NeurIPS 2023 | 「注释一切」图象观念注释器来了,港科大团队出品

2023-10-25 11:38:00

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
今日签到
搜索