无人机+ AI 图象分析:里斯本大学高效检测林业益虫

林木虫害早预警

内容一览:晚期发现虫害对于因地制宜采取防控措施至关重要。尽管遥感技术可用于快速扫描大面积区域,但面对低强度信号或难以检测的物体,其效果并不尽如人意。因此,里斯本大学钻研职员将无人机与 AI 图象分析相结合,在此基础上测试了两种深度进修方法—— FRCNN 及 YOLO 来检测晚期松异舟蛾巢穴,并且效果显著。

关键词:AI  算法   益虫检测   YOLO

本文首发自 HyperAI 超神经微信公众平台~

当下,丛林资源减少和环境恶化愈加严重,丛林益虫已然成为全球丛林保护的重要挑战之一。其中,松异舟蛾 (Thaumetopoea pityocampa) 这类具有破坏力的益虫引起了广泛重视。松异舟蛾主要分布在欧洲南部、地中海和北非地区,其幼虫会在松树的树干和枝条上钻洞啃食,破坏松树的生长和发育。

为了晚期检测和防控松异舟蛾,里斯本大学 (University of Lisbon) 钻研职员比较了两种深度进修算法,以解决无人机图象中的巢穴识别难题。目前该钻研已发布在《NeoBiota》期刊,标题为「Testing early detection of pine processionary moth Thaumetopoea pityocampa nests using UAV-based methods」。

无人机+ AI 图象分析:里斯本大学高效检测林业益虫

该钻研成果已发表在《NeoBiota》上

论文地址:

https://neobiota.pensoft.net/article/95692/

实验概述

过往,科研职员通常借助遥感技术(卫星等)和多光谱相机结合,得到一定区域内的丛林覆盖图象,并从树冠颜色、死树位置等信息判断整体虫害情况。然而,由于图象分辨率很低,无法检测到单个树木虫害情况。因此,本实验中钻研职员提出了由无人机收罗图象的方式。这样,无人机能够接近单个树木并对它们进行更细致的扫描和收罗。

钻研职员在无人机获取的图象上,测试了两种深度进修方法——Faster R-CNN (FRNN) 及 YOLO 来检测晚期松异舟蛾巢穴(以下简称巢穴),具体实验过程如下:

钻研选址 

钻研职员在法国、意大利和葡萄牙各选择了 1 个钻研所在。如图 1 所示,这 3 个所在之间树龄、密度等特征均不相同。无人机+ AI 图象分析:里斯本大学高效检测林业益虫

图 1:钻研所在情况

a:葡萄牙松树林

b:法国松树林

c:意大利黑松林

在 3 个所在中,钻研职员都采用了大地计数 (2 名观察员分别目测树木两侧)  来检测巢穴数目,除此之外,图 1b 所示的法国松树林中,钻研职员还站在一个位于树冠上方 2 米的移动平台上,来检测巢穴数目。

数据集 

钻研职员使用了无人机加高清摄像头的方式收罗了 3 个样地的图象,其中高清 (HD) 摄像机 (RGB HD SONY Alpha 7R) 最佳应用机能方案确定为:采用具有 35mm 焦距和至少 36 Mpix 分辨率的 RGB HD 传感器,而无人机则选择了 DJI Matrice 300 多旋翼无人机平台,并制定了 80% 的航迹内部和横跨航迹的重叠度。

最终,钻研职员得到了无人机收集的 22,904 张图象作为数据集,并通过数据增强技术,如改变亮度、色调、噪声及图象压缩等操作无人机图象,生成新的数据集,使模型更好地进修和泛化。其中,该数据集的 80% 用于模型训练,20% 用于测试

实验过程

无人机模型 

考虑到一些巢穴只能从侧面看到,钻研职员用模型检测主要针对的是单张无人机正射图象而非全局正射图象,因为全局图象是垂直视角,容易造成遗漏。无人机正射图象是指通过对无人机收罗的图象进行处理,使其在地图上的位置和比例与现实世界中的位置和比例一致。

钻研团队训练了基于 FRCNN 和 YOLO 的两种深度进修模型,同时为了评估模型检测无人机图象的结果,还配备 1 名观测员对每张图象上的巢穴数目进行了视觉评估。

钻研职员使用了 F1 得分具体衡量模型与人眼检测 (human eye) 在无人机、大地图象上的机能其中 F1 得分计算公式如下图:无人机+ AI 图象分析:里斯本大学高效检测林业益虫

图 2:F1 计算公式

F1 得分是精确率和  召回率 的  调和平均 值,可用来评估模型的准确性和完整性。其取值范围为 0 到 1,越接近 1 表示模型的机能越好。

实验结果 

钻研职员将 FRCNN 及 YOLO 模型与人眼检测进行了比较,测试了模型在检测树上有无巢穴存在 (% infested trees) 和巢穴数目 (No. PPM nests) 的机能。无人机+ AI 图象分析:里斯本大学高效检测林业益虫

表 1:不同方式检测松异舟蛾巢穴情况

如表 1 所示,通过大地计数,人眼对整个钻研范围内树木一共目测到 665 个巢穴;而通过目测无人机图象,则检测到 222 个巢穴。钻研职员认为造成二者差异的原因是大地目测具有多维观测角度,而无人机局限于从上方进行拍摄。不过,无人机图象具有其自身优势,因为大地详细检测需要耗费较高成本,而无人机可以告知人们存在的风险并进一步采取行动进行详细的大地检测。

下图是两种模型在 3 个样地无人机图象上的巢穴存在检测和每棵树上巢穴数目检测的 F1 得分。无人机+ AI 图象分析:里斯本大学高效检测林业益虫

图 3:两种模型对无人机图象检测 F1 得分

a:检测无人机图象上的巢穴存在

b:检测每棵树上巢穴数目

如图 3 所示,检测无人机图象上的巢穴,YOLO 模型 F1 得分高达 0.826,检测每棵树上巢穴数目,YOLO 模型 F1 得分高达 0.696。同时,钻研职员发现 YOLO 模型的检测机能高于 FRCNN。下图是在不同钻研所在(不同松树品种),两种模型在检测无人机图象时的 F1 得分。无人机+ AI 图象分析:里斯本大学高效检测林业益虫

图 4:不同钻研所在,两种模型 F1 得分

a: 检测无人机图象上的巢穴存在

b: 检测每棵树上巢穴数目

如图 4 所示,在 3 个样地,无论是检测巢穴存在还是检测每棵树上巢穴的数目,YOLO 模型 F1 得分均优于 FRCNN 模型。

综上,钻研职员提出,无人机和 AI 模型相结合能够有效地对松异舟蛾巢穴进行晚期检测。其中,无人机有如下优点:

高效性:无人机可以快速地覆盖大面积的地区,收集大量的数据。高精度:无人机搭载的高分辨率相机可以捕捉到非常精细的图象和视频,从而使无人机可以提供高精度的数据。

针对无人机图象上的巢穴检测及巢穴数目检测,YOLO 模型都表现优异。这表明相关技术的结合,在监测和管理丛林中的益虫和病害方面具有重要意义,同时也为保护丛林生态系统提供了新的思路。

无人机+ AI:科技领域的重要趋势

目前看来,无人机+ AI 已成为国内外丛林保护发展的共识。通过无人机的高空视角和  人工智能 的分析,钻研职员执行任务时能够更高效、准确和自动化,从而改善丛林保护效率。

聚焦国内,中国科学院发布的「丛林病虫害遥感监测——从卫星到无人机」报告中详细介绍了丛林病虫害的类型、发展阶段以及检测方法,并提出未来丛林保护工作的重要方向之一正是发展预测模型,实现预测和检测方法的无缝对接,这与本论文的钻研成果不谋而合。

报告地址:

https://bit.ly/3oJgDWf

可以看到,无人机+ AI 为丛林保护工作带来了新的机遇和挑战,为提升效率和保护丛林资源发挥了重要作用。然而,无人机与人工智能的融合同时也面临一系列挑战。一方面,需要不断推动无人机和人工智能的发展,提高机能和稳定性。另一方面,在数据安全和隐私保护方面,需要相关政策和规范,以确保无人机和人工智能应用能安全地处理和存储数据。

本文首发自 HyperAI 超神经微信公众平台~

给TA打赏
共{{data.count}}人
人已打赏
AI

编译 Keras 模型

2023-6-25 18:02:00

AI

编译 ONNX 模型

2023-6-25 18:06:00

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
今日签到
搜索