跑ChatGPT体量模型,从此只需一块GPU:加速百倍的方法来了

1750 亿参数,只需要一块 RTX 3090,ChatGPT 终于不再是大厂专属的游戏?

计较成本是人们打造 ChatGPT 等大模型面临的重大挑战之一。

据统计,从 GPT 进化到 GPT-3 的过程也是模型体量增长的过程 —— 参数量从 1.17 亿增加到了 1750 亿,预训练数据量从 5GB 增加到 45TB,其中 GPT-3 训练一次的费用是 460 万美元,总训练成本达 1200 万美元。

除了训练,推理也很花钱。有人估算,现在 OpenAI 运转 ChatGPT 的算力费用每天就有 10 万美元。

在发展技术,让大模型掌握更多能力的同时,也有人在尝试降低 AI 所需的算力资源。最近,一种名为 FlexGen 的技术因为「一块 RTX 3090 跑 ChatGPT 体量模型」而获得了人们的关注。

虽然 FlexGen 加速后的大模型看起来仍然很慢 —— 跑 1750 亿参数的语言模型时每秒 1 个 token,但令人印象深刻的是,它已经把不可能变成了可能。

传统上,大语言模型(LLM)推理的高计较和内存要求使人们必须使用多个高端 AI 加速器进行训练。本研讨探索了如何将 LLM 推理的要求降低到一个消费级 GPU 并实行实用性能。

近日,来自斯坦福大学、UC Berkeley、苏黎世联邦理工学院、Yandex、莫斯科国立高等经济学院、Meta、卡耐基梅隆大学等机构的新研讨提出了 FlexGen,这是一种用于运转有限 GPU 内存的 LLM 的高吞吐量生成引擎。

通过聚合来自 GPU、CPU 和磁盘的内存和计较,FlexGen 可以在各种硬件资源限制下灵活配置。通过线性规划优化器,它搜刮保存和访问张量的最佳模式,包括权重、激活和注意力键 / 值(KV)缓存。FlexGen 将权重和 KV 缓存进一步收缩到 4 位,精度损失低到可以忽略不计。与最先进的 offloading 体系相比,FlexGen 在单个 16GB GPU 上运转 OPT-175B 的速度提高了 100 倍,并首次实行了 1 token/s 的实际生成吞吐量。如果提供了更多的分布式 GPU,FlexGen 还带有流水线并行 runtime,以允许在解码时进行超线性扩展。

目前,该技术已经放出代码,获得了几千 Star 量:https://github.com/FMInference/FlexGen

跑ChatGPT体量模型,从此只需一块GPU:加速百倍的方法来了

简介

近年来,大语言模型在广泛的任务中表现出卓越的性能。LLM 在展现出前所未有的通用智能的同时,也让人们在构建时面临着前所未有的挑战。这些模型可能有数十亿甚至数万亿个参数,这导致运转它们需要极高的计较和内存要求。例如,GPT-175B(GPT-3)仅用于保存模型权重就需要 325GB 的内存。要让此模型进行推理,至少需要五块英伟达 A100(80GB)和复杂的并行计谋。

降低 LLM 推理资源需求的方法是最近人们经常讨论的内容。这些努力分为三个方向:

(1)模型收缩以减少总内存占用量;

(2)协同推理,通过去中心化分摊成本;

(3)Offloading 以利用 CPU 和磁盘的内存。

这些技术显着降低了使用 LLM 的计较资源需求。然而,人们通常假设模型适合 GPU 内存,而现有的基于 offloading 的体系仍然难以使用单块 GPU 以可接受的吞吐量运转 1750 亿参数规模的模型。

在新研讨中,作家专注于高吞吐量生成推理的有效 offloading 计谋。当 GPU 显存不够用时,我们需要将其卸载到二级保存,通过部分加载的方式,逐段进行计较。在典型的机器上,内存层次结构分为三级,如下图所示。高级内存速度快但稀缺,低级内存速度慢但充裕。

跑ChatGPT体量模型,从此只需一块GPU:加速百倍的方法来了

在 FlexGen 中,作家不追求低提早,而是瞄准面向吞吐量的场景,这些场景在基准测试、信息提取、数据整理等应用中很受欢迎。实行低提早对于 offloading 来说本质上是一个挑战,但是对于面向吞吐量的场景,可以大大提高 offloading 的效率。图 1 说明了三个具有 offloading 的推理体系的提早吞吐量掂量。通过仔细的调度,I/O 成本可以通过大量输入分摊并与计较重叠。在研讨中,作家展示了就单位算力成本而言,单块消费级 GPU 吞吐量优化的 T4 GPU 效率要比云上提早优化的 8 块 A100 GPU 的效率高 4 倍。

跑ChatGPT体量模型,从此只需一块GPU:加速百倍的方法来了

图 1. OPT-175B(左)和 OPT-30B(右)上三个基于 offloading 的体系的提早和吞吐量掂量。FlexGen 实行了新的帕累托最优边界,OPT-175B 的最大吞吐量提高了 100 倍。由于内存不足,其他体系无法进一步提高吞吐量。

尽管已有研讨在训练的背景下讨论了 offloading 的提早 – 吞吐量掂量,但尚未有人将其用于生成 LLM 推理,这是一个截然不同的过程。由于 LLM 的自回归性质,生成推理提出了独特的挑战。除了保存所有参数外,它还需要顺序解码并维护一个大的注意力键 / 值缓存(KV 缓存)。现有的 offload 体系都无法应对这些挑战,因此它们执行过多的 I/O,只能实行远低于硬件能力的吞吐量。

为生成推理设计良好的 offloading 计谋具有一定挑战性。首先,这个过程中存在三种张量:权重、激活和 KV 缓存。该计谋应指定在三级层次结构上的卸载内容、位置以及卸载时机。其次,逐个 batch、逐个 token 和逐个 layer 计较的结构形成了一个复杂的依赖图,可以通过多种方式进行计较。该计谋应该选择一个可以最小化执行时间的时间表。这些选择共同构成了一个复杂的设计空间。

为此,在新方法 FlexGen 上,人们提出了一种用于 LLM 推理的 offloading 框架。FlexGen 聚合来自 GPU、CPU 和磁盘的内存,并能有效地调度 I/O 操作,作家也讨论了可能的收缩方法和分布式管道并行性。

跑ChatGPT体量模型,从此只需一块GPU:加速百倍的方法来了

该研讨的主要贡献如下:

1、作家正式定义了可能的 offloading 计谋的搜刮空间,并使用成本模型和线性规划求解器搜刮最佳计谋。值得关注的是,研讨人员证明了搜刮空间捕获了一个几乎 I/O 最优的计较顺序,其 I/O 复杂度在最优计较顺序的 2 倍以内。搜刮算法可以针对各种硬件规格和提早 / 吞吐量限制进行配置,从而提供一种平滑导航掂量空间的方法。与现有计谋相比,FlexGen 解决方案统一了权重、激活和 KV 缓存的放置,从而实行了更大的 batch size。

2、研讨表明,可以将 OPT-175B 等 LLM 的权重和 KV 缓存收缩到 4 位,而无需重新训练 / 校准,精度损失可忽略不计。这是通过细粒度分组量化实行的,可以显著降低 I/O 成本。

3、通过在英伟达 T4 GPU (16GB) 上运转 OPT-175B 来展示 FlexGen 的效率。在单块 GPU 上,给定相同的提早要求,与 DeepSpeed Zero-Inference (Aminabadi et al., 2022) 和 Hugging Face Accelerate (HuggingFace, 2022) 相比,不收缩的 FlexGen 可以实行高出 65 倍的吞吐量,后者是目前业内最先进的基于 offloading 的推理体系。如果允许更高的提早和收缩,FlexGen 可以进一步提高吞吐量并达到 100 倍的改进。FlexGen 是第一个可以使用单块 T4 GPU 为 OPT-175B 实行 1 token/s 速度吞吐量的体系。如果给定多块分布式 GPU,具有流水线并行性的 FlexGen 可在解码时实行超线性扩展。

在研讨中,作家还将 FlexGen 和 Petals 作为 offloading 和去中心化集合推理方法的代表进行了比较。结果表明,具有单块 T4 GPU 的 FlexGen 在吞吐量方面胜过具有 12 块 T4 GPU 的分散式 Petal 集群,并且在某些情况下甚至可以实行更低的提早。

运转机制

通过聚合来自 GPU、CPU 和磁盘的内存和计较,FlexGen 可以在各种硬件资源限制下灵活配置。通过线性规划优化器,它搜刮保存和访问张量的最佳模式,包括权重、激活和注意力键 / 值 (KV) 缓存。FlexGen 将权重和 KV 缓存进一步收缩到 4 位,精度损失可以忽略不计。

FlexGen 的一个关键思想是进行提早 – 吞吐量掂量。实行低提早对于卸载方法来说本来就具有挑战性,但对于面向吞吐量的场景,可以极大地提升卸载效率(见下图)。FlexGen 利用块调度来重用权重并将 I/O 与计较重叠,如下图 (b) 所示,而其他基线体系使用低效的逐行调度,如下图 (a) 所示。

跑ChatGPT体量模型,从此只需一块GPU:加速百倍的方法来了

目前,该研讨作家的下一步计划包括对苹果 M1、M2 芯片的支持和 Colab 部署的支持。

FlexGen 自发布后在 GitHub 上的 Star 量很快上千,在社交网络上热度也很高。人们纷纷表示这个项目很有前途,似乎运转高性能大型语言模型的障碍正在被逐渐克服,希望在今年之内,单机就能搞定 ChatGPT。

有人用这种方法训练了一个语言模型,结果如下:

跑ChatGPT体量模型,从此只需一块GPU:加速百倍的方法来了

虽然没有经过大量数据的投喂,AI 不知道具体知识,但回答问题的逻辑似乎比较清晰,或许未来的游戏中,我们能看见这样的 NPC?

参考内容:https://news.ycombinator.com/item?id=34869960

给TA打赏
共{{data.count}}人
人已打赏
AI

ICLR 2023 Oral | 漂浮感知动静神经搜集加持,光阴域泛化新框架远超范围泛化&适应方式

2023-2-27 17:19:00

AI

PPC Insights系列:洞见宁静多方图联邦

2023-2-28 11:33:00

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
今日签到
搜索