我用ChatGPT写神经网络:一字不改,结果竟然很好用

AI 写 AI,来得比预料中更快一些。

自从去年底推出以来,对话式 AI 模型 ChatGPT 火遍了整个社区。

ChatGPT 的确是一个了不起的工具,就像一个「潘多拉魔盒」。一旦找到正确的打开方式,你或许会发现,自己再也离不开它了。

作为一个全能选手,人们给 ChatGPT 提出的要求五花八门,有人用它写论文,有人让它陪聊,这些都是常见的玩法。脑洞再打开一点,既然 ChatGPT 是 AI 中的「王者」,那它会不会写一个 AI?

近日,一位呆板进修范畴的博主突发奇想,他决定让 ChatGPT 建立一个神经网络,应用 Keras 解决 MNIST 问题。

MNIST 算是呆板进修范畴的经典问题。即使这个手写数字数据集逐渐淡出了计算机视觉范畴,但它的纪念意义仍然不可忽视,很多人入门深度进修的第一个数据集、考证算法的第一个实验都是 MNIST。

我用ChatGPT写神经网络:一字不改,结果竟然很好用

话不多说,想到了就开工。作家直接让 ChatGPT 写了一段代码,看上去圆满无缺,甚至不需要变动任何内容。

我用ChatGPT写神经网络:一字不改,结果竟然很好用

这是一个很好的开始。

ChatGPT 选择了分类穿插熵作为损坏函数。作家提出重写分类穿插熵这部分代码,ChatGPT 将其替换为稀疏分类穿插熵,革新之后的代码仍能 Work。可以发现,新的损坏函数放弃了标签的分类转换。

我用ChatGPT写神经网络:一字不改,结果竟然很好用

ChatGPT 生成的代码应用了全连接层,但作家想应用卷积层。因此,ChatGPT 按照指示修改了代码,并添加了一个 Conv2D 和一个最大池化层(MaxPooling layer)。

我用ChatGPT写神经网络:一字不改,结果竟然很好用

然后来到了评价最终模型阶段,作家让 ChatGPT 应用尝试集编辑代码。

我用ChatGPT写神经网络:一字不改,结果竟然很好用

结果看起来很棒,而且 ChatGPT 的每一次复原都带有完整的解释。比如在这次评价中,它这样解释:

「评价」方法将尝试数据和尝试标签作为参数,并返回模型编译(此处为准确率)期间指定的损坏和度量。上面的代码片段输入了尝试的准确率,这应该可以让你了解到模型对新数据的概括性。

模型在训练期间应用了整个尝试集作为考证数据。然后,作家让 ChatGPT 将其变动为训练数据的 20%。

我用ChatGPT写神经网络:一字不改,结果竟然很好用

此外,作家还想要更小的 batch 并运行更少 epoch 的代码。虽然这一步未必要用到 ChatGPT,但他不想在不革新 ChatGPT 上下文的情况下变动代码。

所以这项任务还是落在了 ChatGPT 头上:

我用ChatGPT写神经网络:一字不改,结果竟然很好用

接下来,作家打算绘制训练过程中的训练和尝试损坏图。ChatGPT 的建议是:需要变动适合模型的 line 以捕获其结果值。

我用ChatGPT写神经网络:一字不改,结果竟然很好用

我用ChatGPT写神经网络:一字不改,结果竟然很好用

为了揭示数据集中的一些示例,作家让 ChatGPT 编辑代码来输入图象和标签的组合。这些输入的代码也很圆满,附有 20 张图片的合集。

我用ChatGPT写神经网络:一字不改,结果竟然很好用

我用ChatGPT写神经网络:一字不改,结果竟然很好用

建立模型时,查看其结构也是必要的。如果用这个问题去问 ChatGPT ,复原是:

我用ChatGPT写神经网络:一字不改,结果竟然很好用

ChatGPT 给出的是关于模型的归纳:

我用ChatGPT写神经网络:一字不改,结果竟然很好用

模型的归纳很有用,但作家更想看到显示模型结构的图。所以继续问:

我用ChatGPT写神经网络:一字不改,结果竟然很好用

我用ChatGPT写神经网络:一字不改,结果竟然很好用

结果是满意的,最后就是准备部署这个模型了,让 ChatGPT 将模型遗失到磁盘吧:

我用ChatGPT写神经网络:一字不改,结果竟然很好用

现在,作家想创建一个应用遗失的模型进行预测的类。这是 prompt 很有趣,解决方案也很圆满。

我用ChatGPT写神经网络:一字不改,结果竟然很好用

现在编辑一个示例,应用预测器的类来预测 10 个随机图象的标签:

我用ChatGPT写神经网络:一字不改,结果竟然很好用

为了完成这个,作家让 ChatGPT 揭示了一个混淆矩阵:

我用ChatGPT写神经网络:一字不改,结果竟然很好用

该说不说,ChatGPT 应用的样式还真挺好看。

我用ChatGPT写神经网络:一字不改,结果竟然很好用

完成所有试验后,作家将所有 ChatGPT 生成的代码公布了出来,你也可以上手试试:

地址:https://colab.research.google.com/drive/1JX1AVIfGtIlnLGqgHrK6WPylPhZvu9qe?usp=sharing

给TA打赏
共{{data.count}}人
人已打赏
AI

AIGC用于智能写作的技能综述-悲观数据

2023-1-13 11:46:00

AI

穿颜色成对的袜子,追最新的剧:这群coder正帮视障者移走身上的大山

2023-1-16 17:59:00

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
今日签到
搜索