-
OpenAI o1 AI 模型 PlanBench 规划能力实测:准确率 97.8%,远超 LLaMA 3.1 405B 创造的 62.6% 纪录
来自亚利桑那州立大学的科研团队利用 PlanBench 基准,测试了 OpenAI o1 模型的规划能力。研究结果表明 o1 模型取得了长足的进步,但仍然存在很大的局限性。PlanBench 基准简介PlanBench 开发于 2022 年,用于评估人工智能系统的规划能力,包括 600 个来自 Blocksworld 领域的任务,其中积木必须按照特定顺序堆叠。OpenAI o1 模型成绩在 Blo…- 18
- 0
-
CoT能让模型推理能力无上限?田渊栋、LeCun下场反对:两层MLP还能模拟全世界呢
「这相当于在理论上,两层神经网络在理论上可以拟合任何数据,我们就盲目相信并应用在所有场景中。」大模型新范式 OpenAI o1 一经发布,如何「复刻」出 o1 便成为了 AI 圈最热的话题。由于 OpenAI 对技术细节守口如瓶,想从 AI 那里「套话」,让它复述完整的内部推理过程,多问几句,OpenAI 直接发邮件警告要撤销你的使用资格。想从技术报告中想找出点蛛丝马迹,也同样困难。于是,大家将目…- 2
- 0
-
如何从头开始编辑LoRA代码,这有一份教程
作者表示:在各种有效的 LLM 微调格式中,LoRA 仍然是他的首选。LoRA(Low-Rank Adaptation)作为一种用于微调 LLM(大语言模型)的流行技术,最初由来自微软的研究人员在论文《 LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS 》中提出。不同于其他技术,LoRA 不是调整神经网络的全部参数,而是专注于革新一小部分低秩矩阵…- 37
- 0
-
数学奥赛冠军都做不对的题,却被拿来考ML模型?GPT-3:我不行
为了衡量机器学习模型的数学求解能力,来自 UC 伯克利和芝加哥大学的研究者提出了一个包含 12, 500 道数学比赛难题的新型数据集 MATH,以及帮助模型学习数学基础知识的预训练数据集 AMPS。研究发现,即使是大参数的 Transformer 模型准确率也很低。- 8
- 0
-
❯
个人中心
今日签到
搜索
扫码打开当前页
返回顶部
幸运之星正在降临...
点击领取今天的签到奖励!
恭喜!您今天获得了{{mission.data.mission.credit}}积分
我的优惠劵
-
¥优惠劵使用时效:无法使用使用时效:
之前
使用时效:永久有效优惠劵ID:×
没有优惠劵可用!