深度硬核干货!人工智能对用户体验安排的影响分析

随着 ChatGPT 在 23 年初的火热,AI 热潮已经开始席卷各行各业,人们对于 AI 的热情就像是看着第一款 iPhone 发布或者蒸汽机的发明,期待着它带来一场信息时代的工业革命。同时,AI 替代 60%岗位的口号也足以让相关从业者感到前所未有的压力与焦虑。在各大安排网站上,关于 AI 的内容肉眼可见的占据了越来越多的比重,包括 AI 在安排流程中的应用、各种 AI 最新工具等介绍、AI 的运用技巧、AI 生成的海报/插画等作品……一瞬间,似乎全民都投入到了AI的浪潮之中。 反过头来看,对于用户体验安排而言

深度硬核干货!人工智能对用户体验安排的影响分析

随着 ChatGPT 在 23 年初的火热,AI 热潮已经开始席卷各行各业,人们对于 AI 的热情就像是看着第一款 iPhone 发布或者蒸汽机的发明,期待着它带来一场信息时代的工业革命。同时,AI 替代 60%岗位的口号也足以让相关从业者感到前所未有的压力与焦虑。在各大安排网站上,关于 AI 的内容肉眼可见的占据了越来越多的比重,包括 AI 在安排流程中的应用、各种 AI 最新工具等介绍、AI 的运用技巧、AI 生成的海报/插画等作品……一瞬间,似乎全民都投入到了AI的浪潮之中。

反过头来看,对于用户体验安排而言,由于产物的底层逻辑被 AI 改写,产物的生态、单个产物的形态、运用形式等都将发生翻天覆地的变化。连带着的,由于生产工具的变革,产物的安排、开发流程也将随之发生变化,进一步提高效率,对于从业人员的才智要求也在实时更新。

对于这样一种浪潮,埋头当个鸵鸟或者嗤之以鼻是没有意义的,我们需求看到、认识、拥抱它。所以有人笑称:打不过就加入。同时,对于各种所谓干掉各个岗位的宣传,也吸引着、推动着我们去了解将被什么干掉以及怎么被干掉。

从另一方面讲,只有在技术变革的时候,弯道超车才有可能。如果只是沿用之前的经验与技术,那么成熟的企业就会有先发优势。但是当面对新的技术变革时,大家被拉回到同一起跑线上,这个时候,就看谁能够找到正确的方向,率先突围。

所以,不管是被动也好,还是主动也好,面对着新一轮的技术变革,也希望从 AI 才智本身、所带来的变化、以后的发展等方面全面了解一下这个新的时代宠儿。

更多AI相关干货:

本文结构:

深度硬核干货!人工智能对用户体验安排的影响分析

一、AI 相关概念与术语

1. AI & AIGC

人工智能或者说 AI,Artificial Intelligence。是用呆板来模拟人的智能或者思维模式来完成各项使命目标。

从其工作的机制而言,目前主要分为两种:计划式人工智能,生成式人工智能。

计划式人工智能。根据已有数据举行分析、判断、预测,比如我们常见的抖音、头条、淘宝等的推荐算法。
生成式人工智能。通过分析现有数据来生成模仿、拼合、创造新的内容。比如当下最热的 chatGPT、Midjourney、Sora 等。

从才智角度而言,人工智能也可以分为强人工智能和弱人工智能。

强人工智能。通用型人工智能(AGI,Artificial General Intelligence)。能够像人类一样对不同领域举行记忆、推理和解决问题。领域间的知识与经验可以迁徙、借鉴,是“通才”。既可以写诗画画,又可以诊断疾病,还可以举行数学计算。
弱人工智能。在某一领域具备专业才智、解决特定问题,才智没法泛化,是专才。比如下围棋的 AlphaGo,可以打败人类围棋世界冠军,但是没法回答你“白毛浮绿水”的下一句是什么。

AIGC(Artificial Intelligence Generative Content)

人工智能生成的内容,包括文本、语音、图片、视频等多种形式。

深度硬核干货!人工智能对用户体验安排的影响分析

AI 生成内容

2. AI Agent

① 人类与 AI 协作的三种模式:

嵌入(Embedding)模式:相似于 L2 级别的自动驾驶。人类占据主导,AI 作为工具,执行某条具体的命令。
副驾驶(Co-pilot)模式:相似于 L3 级别的自动驾驶。人与 AI 共同参与,与人类之间互相协商、沟通,实现某一目标。
智能体(Agent)模式:相似于 L4 级别的自动驾驶。人类作为指挥者、监督者、评估者。AI 作为独立的行动者,自主分析目标、拆解使命、尝试执行、对比结果与目标、优化执行步骤与形式并最终实施完成人类设立的目标。

深度硬核干货!人工智能对用户体验安排的影响分析

AI 与人类协作模式

② AI Agent 是什么

AI Agent 是有才智主动思考和行动的智能体。让使命自动化,主要包括感知、记忆、规划与计划、行动/运用工具。

就像吴恩达在 TED 演讲中提到的:“许多工作包含不同的使命,AI 自动化的是使命而不是工作。”与直接运用大语言模型相比,AI Agent 能够依据目标分解复杂的工作流程,从而实现大语言模型的自我对话与运转,而不是简单地执行单一使命或者由人类来驱动使命的每一步。

AI Agent = 感知(Perceive)+LLM(记忆(Memory)+规划(Planning ))+工具运用(Tool use)/行动(Action)

深度硬核干货!人工智能对用户体验安排的影响分析

AI Agent

感知是 AI Agent 运用传感器与周围环境交互,感知真实的物理世界,这个部分涉及到多模态的信息解析与处理。
记忆让 AI Agent 可以存储关于某些方向的专业知识以及交互过程中产生的信息,从而利用这些经验来支持、优化后续的计划与行动。
规划和计划就像是通过大脑举行分析,包含事前规划和事后反思。LLM 在这里就相似于大脑。AI Agent 让 AI 不再是执行单一的使命,而是自动将复杂的使命拆解为一个个可执行的子使命步骤,然后按照顺序执行,并连系感知与记忆信息在过程中不断试错、优化,最终得到满足目标的结果。
工具的运用就像是才智集成/封装,相似于 APP 将才智打包的逻辑(比如修图类 app 可以提高亮度、裁剪画面、改变色彩等等)。通过利用外部的资源或工具来执行使命,从而拓展 AI Agent 的才智边界。
同时各个 AI Agent 之间还能够彼此沟通、协作,通过不同才智之间的配合来发挥最大的效用。

AI Agent 本质而言是一个更好发挥大模型才智的技术框架,是围绕 LLM 搭建的一套程序。让用户不再只是与 LLM 举行对话,而是根据场景,借助 LLM 的分析、推理才智,制定解决思路并调用不同的工具的才智,从而解决问题或者达成既定目标。简单懂得为一个会运用大语言模型才智以及各类工具来帮助人类解决问题的助理。

3. AI 的算法

① AI 的三大流派

符号主义:

基于统计方法,通过建模预测让呆板通过计算来模拟人的智能,实现识别、预测等使命

主要代表算法有:朴素贝叶斯,逻辑回归,计划树,支持向量机。

连接主义:

认为生物智能是由神经网络产生的,可以通过人工形式构造神经网络,训练神经网络产生智能。也就是模拟人的脑部神经系统,通过构建神经元与他们之间的连接,来构建一个可以进修、推理的神经网络。

主要代表就是神经网络算法。

举动主义:

认为生物的智能来自对外界的复杂环境举行感知和适应,通过与环境和其他生物之间的相互作用,产生更强的智能。也就是通过尝试与反馈来强化进修、改进系统自身的举动。

主要代表算法是强化进修。

② 目前主流的算法:

目前主流的算法都是基于神经网络和呆板进修,在此基础上创新与连系。

神经网络(Neural Network)

人工智能三大流派中的连接主义的代表算法,通过人工形式构造神经网络,训练神经网络产生智能。最早起源于麦卡洛克-匹兹模型/M-P 神经元模型(McCulloch-Pitts model)。

简单来说就是模仿人脑的神经元结构,构建一个函数集合作为基本单元,然后再互相之间加权拼接形成神经网络。一个神经元就是一个函数/规则,前一个神经元的输出作为后一个神经元的输出。

1)循环神经网络 (Recurrent Neural Networks, RNN)

神经网络的一种。关键在于多一个隐藏层,可以将上一次的输出产生的输出作为这一次输出的一部分。简单来说就是能够记住上下文信息。

在此基础上演变出来的长短期记忆(Long short-term memory, LSTM),让模型可以去选择记住什么信息、忘掉什么信息,而不是越早的信息记忆得越少,或者无差别地全部记住前文的信息,避免短期记忆、梯度爆炸、梯度消失等问题。(梯度可简单懂得为变化率)

主要用于语音分析、文字分析、时间序列分析。

2)卷积神经网络( Convolutional Neural Network, CNN)

基本机构包含输出层、卷积层、池化层、全联接层、输出层。

卷积层的主要目的是识别与提取不同的局部特征。

池化层也叫降采样层,其本质是采样共享。简单来说就是通过用同一个采样值(最大值或者平均值之类)来代替那些差别不大的采样值,以便缩小数据量。

主要用于图像识别、人脸识别等。

生成式对抗网络(Generative Adversarial Networks, GAN)

主要包含生成器(Generator)、判别器(Discriminator)。

生成器用于生成内容,判别器用于判断生成网络中产生的内容是真实数据还是生成的数据。

生成器要不断优化自己的生成数据让判别器判别不出来;判别器也要优化自己的判断才智,使其更准确;通过互相之间的对抗、制约来实现训练过程。

Transformer 模型:

谷歌的论文《Attention Is All You Need》中提出一种神经网络模型架构。主要特点在于加入自注意力(Self-attention)机制来处理序列数据。

自注意力机制通过给长文本中每个词不一样的权重来判断每个词之间的相关性,从而判断整个文本中最重要的部分。

与 RNN 相比,Transformer 会将一串序列中的每个词的意义及其位置信息连系起来传输给神经网络,从而让模型可以同时处理序列里的所有位置的信息,而不需求像 RNN 那样依次处理。这种并行计算带来的好处是大大提高了模型的训练速度,从而为大模型的发展奠定了基础。

③ 自然语言处理(Natural Language Processing, NLP)

“语言懂得是人工智能领域皇冠上的明珠”——比尔盖茨

自然语言处理(NLP)就是在呆板语言和人类语言之间沟通的桥梁,终极目标就是让人和呆板能够通过自然语言举行交互,也就是让呆板能够懂得人类的语言、文字等。
主要包含自然语言懂得(NLU)和自然语言生成(NLG)。简单来说就是听懂人话和说人话。

④ 呆板进修(Machine Learning, ML)

所有的对象,不论人类、动物,甚至是无生命机械,如果接受外界信息的刺激之后,能形成经验反应,并影响日后的举动,那其实这个过程就已经可以称之为“进修”了。——《智慧的疆界:从图灵机到人工智能》

呆板进修是实现人工智能的核心方法。从有限的观测数据中“进修”(or“猜测”)出一个具有一般性的规律,并利用这些规律对未知数据举行预测的方法。

简单来说,呆板进修就是通过数据训练让算法掌握规律。

深度硬核干货!人工智能对用户体验安排的影响分析

呆板进修

深度进修( Deep Learning)

呆板进修的一个分支。运用深层次神经网络模型举行进修。深度是指模型有多个层次的神经元。通过逐层分解来解决复杂度较高的问题。

深度进修与传统呆板进修最大的区别在于运用神经网络模型代替人工的特征提取过程,通过数据训练来优化模型的表现。

可简单懂得为运用神经网络算法的呆板进修。

监督进修(Supervised Learning)

有标准答案的进修。其基本思想是利用带有标签的训练数据来训练模型,从而使其能够从输出数据中进修到输出与输出之间的映射关系,然后可以利用这个映射关系对新的未打标签数据举行预测。

监督进修需求告诉模型:1. 事物的关键特征是什么(称为特征);2. 那东西到底是什么。就像学生刷题,通过练习获得的经验来解新的题目。

无监督进修(Unsupervised Learning)

没有标准答案的进修。其目标是让模型从未标记的数据中自行发现共性、结构、模式、关联或者表示,而无需运用人工标签或者先验知识的指导。包括聚类、降维、异常检测等。

强化进修(Reinforcement Learning)

与监督进修、无监督进修相似,也是一种呆板进修的形式。

算法不断的尝试、试错,反馈机制通过奖赏与惩罚告诉算法哪种是好的,哪种是不好的,从而规训其举动方向。简单来说就是奖励积极举动和惩罚消极举动。

美剧《生活大爆炸》中 Sheldon 就运用巧克力作为奖励,驯化 Penny 的举动。

深度硬核干货!人工智能对用户体验安排的影响分析

美剧《生活大爆炸》剧照

⑤ 大语言模型(Large Language Model, LLM)

是一种基于神经网络、呆板进修、自然语言处理技术的模型,目前大部分知名的大语言模型都是基于 Transformer 架构。

它通过将每个词转化为向量输出到模型中,并运用大量的文本数据举行训练,让模型来进修服务人类语言懂得和生成的才智。

大语言模型的「大」主要体现在训练数据与模型参数的大,从而需求更高的算力支持。

与传统的呆板进修模型相比,大模型具有更强的表示才智和泛化才智,能够处理海量数据、完成各种复杂的使命,如自然语言处理、计算机视觉、语音识别等。

二、AI 才智分析

1. 人类才智地形图

呆板人专家汉斯·莫拉维克(Hans Moravec)曾提出人类才智地形图的概念,其中,海拔高度代表这项使命对计算机的难度,不断上涨的海平面代表计算机现在能做的事情。

深度硬核干货!人工智能对用户体验安排的影响分析

图源: https://qph.cf2.quoracdn.net/main-qimg-dfa49b90572af22a8b8e9ec7c02b8688

AI 的发展,会逐渐淹没人类的特有的优势领域。最终,当 AI 开始具备安排人工智能的才智(AI Design),AI 才智的推动将有 AI 自己的改进来推动,其速度会比由人类推动快得多。这也是所谓的“奇点”,到达奇点,人工智能将出现爆发式的增长。

就目前而言,人类与 AI 各有优势,所以人类与 AI 携手合作,发挥各自的优势,形成群体智慧,实现 1+1> 2 才是最优解。

① 人类相比于 AI,所拥有的优势:

自主创造、构思以及战略性规划、精细化计划
具有同理心,能够懂得人类的情绪、情感
对于美的懂得与感受
不同领域之间的经验可以迁徙、复用
具备常识
具有价值观、人生观、世界观,能够懂得人类的举动与文化
可以完成精确且复杂的体力工作
可以轻松界定思考问题的框架,也就是哪些问题与使命相关,哪些无关

② AI 相比于人类,所拥有的优势:

没有情感等主观因素,比人类更理性,可以公正客观对待每个方案
可以在极短时间内完成超复杂的运算,从而产出大量的方案与探索结果
可以长时间不厌其烦做同一件事,而且不会累或者因为疲劳而降低准确度
记忆力好,积累的经验可以被随时调用

2. 发挥各自最大的优势

对于 AI 将会取代人类,现在最常见的说法就是:

AI 将改变或者消灭某些工作,同时创造出新的工作。
AI 不会取代人,而会运用 AI 工具的人将取代不会运用 AI 工具的人。

让 AI 解放人类的双手,去做那些机械性、重复、无聊的计算工作。而人类则把时间精力投入到更有价值的工作比如规划、计划、制定目标、人际关系维护等。

当然,二者之间的工作并不是完全剥离、独立的,而是互相影响与沟通协作。比如,人类可以借用 AI 的数据分析才智、预测结果等增强自己的计划才智。

所以,一方面,人要进修怎么更好地运用 AI,发挥 AI 最大的价值。另一方面,AI 也要往增强人类才智、改善人类社会生活的方向发展。

三、AI 才智加持后,产物/业务层面变化

1. 产物边界变得模糊

① 物理世界与数字世界深度融合

数字孪生将物理世界映射到数字世界,具身智能呆板人、自动驾驶等让数字世界操控物理世界。AI 才智的强化则让二者之间的融合更加深入。比如京东 AI 数字人“采销东哥”,看面相几乎和真人无异,可以在直播间为大家介绍各种产物。如果再进一步,可以实时回答观众的问题,那就与真人差别不大了。

② 产物成为才智中心

产物之间的壁垒打通,成为才智插件,主要在于供应某种才智。比如小 D 想通过视频进修糖醋排骨的做法,那么 AI 所获取的内容可能会来自于抖音、快手、淘宝直播、小红书等等平台,或者整合各平台内容生成一个新的、针对于小 D 喜好的内容。平台成为底层信息的供应方或者说资源池,用户也无需在多个产物之间来回切换。

③ 服务安排

由于 AI 对流程中每一个触点信息的掌握以及对于各项才智的集成,使得根据场景调用不同才智以满足需求成为可能。

产物的安排不止考虑单一的产物,而是要考虑与其他产物、才智、服务的配合。在运用环境/场景中,从用户的历程出发,满足用户在整个使命链路中每一个节点的需求。

④ 流程自动化

产物与产物之间的互相衔接、流转也将自动化,无需由用户来推动。比如小 D 要出差,当他向 AI 提出这个需求时,AI 一并将机票、酒店同步预定好,同时,在出差结束后,自动对接人事考勤、费用报销等产物才智,实现流程自动化。也就是依据场景将服务打包,用户触发一次就完成整个流程动作,无需到每一个系统/产物中分别去执行一遍操作。

流程自动化带来的也是效率和易用性的提升,用户的操作负担被大大缩小。

⑤ B/C 端差异缩小

B 端各流程节点之间的沟通、协作、传递也可以由「人-产物-人」的形式转变为「Agent-Agent」 的形式。提高流程运转的效率,降低了 B 端产物的操作复杂度。

当用户与 AI Agent 交互,由 Agent 代替用户去直接面对、调用各个产物的各项才智,发起各种使命,B 端产物和 C 端产物交互的逻辑会愈发相似。Agent 对话式的交互、自动规划等将会大大缩小 B 端产物的进修成本,用户在运用不同类型产物时将不会有太大的差异。

⑥ 多产物形态互联互通

AI 可以在手机、平板、电脑、电视、车载终端等不同设备之间的无缝切换,设备跟着场景转换,但是流程不中断,多设备协调配合走完整个使命链路。比如在下班回家的路上,小 D 在车里听小说,回家以后,家里的智能音箱继续从下车时刻的部分开始继续播放。

2. 接受非结构化的信息

语音识别、NLP、图片识别、手势识别、红外传感、重力感应、脑机接口等等技术的演进与突破。让输出不再依赖于表单、按钮等创建符合计算机懂得模式的结构化信息。

非结构化输出的特点:多模态、更自然、更高效、进修成本更低。不再是人去适应计算机能接受的数据模式,而是计算机来进修懂得人类的信息表达形式,比如表情、手势、语气等。

AI 对于非结构化数据、自然语言的懂得,也降低了产物的复杂度,缩小用户的认知负担,让产物的进修成本大大减低。

① 普适计算(ubiquitous computing)

普适计算是指计算可以在任何设备上、在任何地理位置中以及用任何格式举行。其显著目标之一则是使得计算机设备可以感知周围的环境变化,从而根据环境的变化做出自动的基于用户需求或者设定的举动。

与物联网相似,简单来说就是通过多样化的设备(手机、手表、眼镜、微波炉、冰箱等)来感知信息、获取信息、处理信息,所有的物品都有可能变成一个计算机。这样的目的是让计算机可以随时感知环境、举动的变化,从而及时、贴心地满足用户的需求。

3. 数据的集中化处理

假设个人助手或者说 AI Agent 的成熟,那么人们与产物交互的通道将会从各个分散的产物集中到一个点。由统一的交互入口收集的用户举动数据以及 AI 主动通过各类设备收集的用户个人数据,让每个人的信息更加完整、全面地被 AI 所记录,更容易实现个人数据的集中化处理。

AI 掌握的个人信息越多,才能更全面地了解一个人,也才能更有针对性地为用户供应个性化的服务。聪明、贴心、智能的 AI 与集中化的数据将会互相促进、互相强化,也就是越集中的数据带来越聪明的 AI,越聪明的 AI 将会通过多渠道收集到更多的个人数据。

① 对于个人信息安全的注重

AI 将会运用个人的数据举行训练并改进举动,这需求符合监管要求,遵循个人数据处理的最小化原则,保证用户的知情权,举行节点隔离以及加强对于数据处理权限、存储、保密的管理。避免个人信息的泄露或者被不当运用。

当然,这也需求更加完善的数据保护法规举行支撑,比如 GDPR、ADPPA、中华人民共和国数据安全法、个人信息保护法等,避免个人隐私泄露。

4. 人机深度协同,构建信任变得更重要

越是运用频繁的、形成依赖的产物,越需求得到用户的信任。如果微信在运用过程中时不时的出现 bug,发给 A 的消息错发给了 B,那么用户就会变得不敢运用。尤其 AI 产物还需求收集用户的各种数据才能更好地发挥作用,那么得到用户的信任将显得更加重要。

信任来源于了解、确定、可控,由于 AI 的黑盒性质以及产物越来越主动,如何解释 AI 的计划过程、规范 AI 的举动、提高 AI 举动的可预测性、保持用户的掌控感也越来越重要。

解释计划过程和规范举动并不是说需求 AI 事事作说明、汇报,而是当用户想要了解时供应详细的解释与说明、当用户想要自己计划时可以修改 AI 供应的方案。从原则上而言,AI 最终还是要服从于人、服务于人,而不是指挥人、控制人、取代人。

5. 提前预判,主动推送,具备主动性

根据用户的场景、举动,判断用户的意图,通过多产物、数据的贯通,综合分析,供应事前的提醒与服务。比如在用户购买机票后对接航班、天气、交通等数据,如果有航班管制、恶劣天气、交通拥堵等不良状况发生,可以及时通知用户。

① 场景驱动

信息的集中化处理,使得连系各种传感器、设备所供应的环境信息以及用户的生理、举动等信息举行综合分析成为可能。AI 可以了解用户所处的环境及其需求,通过场景所供应的上下文来缩小信息输出的要求。同时,调用各个产物的才智,解决问题,缩小用户操作,提高效率与用户体验。

比如,智能家庭助手通过手环检测到小 D 躺在沙发上已经睡着,并且有点冷,那么它可能会自动调小正在播放的音乐、关闭窗帘、调暗灯光、打开空调,让用户更加舒适且不会着凉。

6. 个性化/定制化

由于用户与产物之间通过一个统一入口来交互,那么用户的举动数据(包括个人的生物信息、健康状态、行车路线、购买习惯、用户偏好、场所出入数据等)将更加全面、完整、准确被获取。

通过大量的数据与呆板进修,让人工智能可以依据个人喜好、场景,举行意图判断。连系各个产物才智,针对不同用户可以推荐更加精准、个性化的内容、功效等,也就是说功效也能够像 feed 流一样被推荐,更好地满足不同人群、场景的需求。

① 用户自定义

AI 降低了产物/工具操作的门槛,让更多人可以运用它,也就是所谓技术的民主化。

这就让用户有可能根据自己的喜好、习惯、场景等需求差异来配置产物功效组成结构、优先级等。就像是洞洞鞋,本身供应一个基础的样式,但是每个人可以选择自己不同的鞋花。未来,也许每个人都可以都可以自己安排一个 APP 应该具有什么功效、安排衣服样式、安排房子的装修风格等等。

同时,通过社区、论坛等的信息交流,A 安排的产物也许 B 可以参考、改进后成为属于自己的产物,每个人都有可能成为生活的创作者,而创作的对象可以包罗万象。

7. 改变垂直领域的细分产物

所有行业都值得基于人工智能技术重做一遍——阿里巴巴张勇

AI 的生成、总结、提取、分类等才智的突破,将进一步促进各行业中各类信息的整合与利用,接手重复性的工作,给各行各业带来流程的简化、模式的转变、效率的提升。
针对如残障人士、老人、小孩等特殊群体,可以开发供应陪伴、照顾等功效的 AI 呆板人。

针对律师、医生等特定职业的人员,利用 AI 辅助举行资料收集、数据分析等,增强他们的才智,提升工作的效率。

针对生产线、仓库等目标和使命相对固化的场景,也可以引入 AI 来替代很多重复性等工作。比如利用无人超市模式来管理仓库出库,领用人员刷脸后自动确认领料单,同时系统在领料人员拿走物品后自动举行出库处理、更新库存数据,在库存不足时对接采购系统举行采购等。

四、AI 才智加持后,产物的交互逻辑变化

1. 信息架构的变化

GUI 模式下基于点击的输出,需求将页面内容、功效分门别类举行组织、布局,以方便用户懂得与查找然后触发,所以信息需求按照逻辑归类,可寻性也是信息架构关注的重点之一。

AI 才智加持下的对话式交互,让用户只需求面对一个统一的入口,通过这个入口直达任意一个功效(相似于 Deeplink)。信息的结构不再是以用户快速找到为中心,而是以让 AI 快速调取为导向。不再是由人去穿越层层结构寻找所需信息,而是所需的信息从纷繁复杂的数据中跳脱出来。

① 功效架构扁平化

通过 AI 直接调起产物中的某一个页面,模块的功效更加独立、内聚,成为一个个才智单元,产物则成为才智单元的横向集合。

如果是窄而深的信息架构,层层嵌套的模式,那么才智之间可能会有一定的耦合与依赖,被直接调起时容易缺失上下文,导致功效不可用。

1)导航的弱化

直接调起的模式,用户直达功效。比如对 AI 说「我想听李健的《给你》」,它会直接打开播放器,播放这首歌。而不再需求我们「打开音乐 APP-找到并点击搜索框-输出并搜索-点击播放」这样一步一步操作。

缩小了寻找信息的步骤,也就缩小了导航的需求。导航页的价值将会降低,以往功效之间需求合理组织以方便用户记忆、寻找的特征将会减弱。

2)信息模块化

功效变成相似于 API 或者组件的形式,可以根据需求与其他产物的信息随意拼装,成为整体信息流的一部分。就像我们在小红书看一个个的笔记,或者在淘宝浏览一个一个的商品,功效也被拆解为一个一个的单元,在场景需求的时候与其他的功效拼装形成一个解决方案。

同时,从整体而言,每个产物可能只供应整个信息集合的其中一个部分。也就是前面的说的产物边界被打破。

3)拓展性更强

每个页面都有可能成为首页,都是信息架构的顶部,这需求产物的信息架构有很强的兼容性和扩展性。——《AI改变安排》

按照前述 AI Agent 的设想,AI 所涉及的使命可能包含多个层级的复杂度,需求不同才智的配合才能完成,也就是需求依赖不同的产物、组件所供应的才智。

产物的每个功效将相似于乐高的一个积木零件,便于互相组合,目的是容纳更多新的功效。同时 AI 直达功效的才智可以弱化过宽的信息架构所带来的寻找信息不方便的问题。

4)用完即走

用户以使命目标为导向,不在乎是哪个产物、哪个功效,关键在于高效。就像我们不会关注手机包装盒里的充电器是哪个代工厂生产的。产物/才智会“透明化”“无形化”,这些才智的供应方将会成为 AI Agent 所对接的“供应商”。比如小 D 想听李健的《给你》,内容有可能是 QQ 音乐供应的、也有可能是网易云音乐供应的、或者是 B 站一个李健的音乐会视频,对用户而言,听歌的目的达到了就行。

2. 交互范式的变化

技术的革新会引起范式的变迁。最终指向的都是越来越简单、方便、自然,都是围绕着更好地服务于人而来的。

① 人机交互的发展历程:

批处理(Batch Processing)
命令行交互(Command-based Interaction)
图形界面交互(Graphical User Interfaces,GUI)
对话式交互(Conversational User Interface,CUI)/语音用户界面(Voice User Interface,VUI)/语言用户界面(Language User Interface,LUI)
自然界面交互(Natural user interface,NUI )/基于意图的结果规范化(Intent-Based Outcome Specification )

前三种都属于用户向计算机发出命令,计算机严格执行命令并产生结果,用户评估结果逐步调整输出,最终一步一步达成目标。

对话式交互,本质也和之前的几种范式一样,人发出命令,计算机执行命令,只是用户的输出形式更加多样化,不止是依赖于当前界面所呈现的元素与选项。(图形界面相对于命令行,也是在输出输出形式上变得更丰富,鼠标、触控、手势等输出形式以及图形、动画等输出形式缩小了用户的认知负担、记忆负担、操作负担)

而在高级阶段自然界面交互/基于意图的的结果规范化中,用户不再需求去适应计算机,而是计算机来适应人,去懂得人的表情、手势、语言、语气、点击、生理数据等等形式/渠道所传递的信息。用户也不再告诉计算机要做什么,而是告诉计算机他们想要的结果,或者,计算机能够通过感知周围环境,主动识别用户的意图并自动达成其目标。

相似于前文提到过的 AI Agent,能够依据目标分解复杂的工作流程,从而实现大语言模型的自我对话与运转,而不是简单地执行单一使命或者由人类来驱动使命的每一步。

深度硬核干货!人工智能对用户体验安排的影响分析

人机交互发展历程

② 对话式交互

交互本质上是信息的交流,包含信息的输出与输出。人与现有产物的交互,输出的形式包括鼠标、键盘、触屏手势、语音、拍照识别、扫码等。而输出的内容则包括视觉(文字、图片、视频、灯光等)、听觉(语言、报警音等)、触觉(震动)。

人与人之间最自然的交流形式通常是语言交流,通过言语表达思想、感情和意图。除了语言,人们还通过非语言的形式举行交流,如面部表情、姿势、手势、眼神等。这些非语言元素可以传达丰富的信息,有时比言语更直观和强烈。这是我们整个成长过程中一种主要的进修形式。

对话式交互,就像是人与人之间聊天的交互形式,输出的途径可以是文字,也可以是语音、图片、链接、手势等。Sora 甚至可以运用视频作为输出来生成视频。

1)对话式交互的特点

用户的输出没有边界

摆脱了按钮、输出框等的限制,用户的输出可能五花八门,甚至与产物的主要功效无关。功效“无形”之后,就需求针对各种场景给出不同的反馈。

打破产物边界、跨越信息层级

入口统一,交互路径缩短,能够穿透信息层级、跨越产物的业务界限。我们的交互过程基于语言的形式输出,然后回答的形式根据内容而变。可以连系所个产物、领域的数据,综合给出答案。也就是说,我们不用面对数量繁多的应用/产物,只需求像运用 Siri 一样,和一个统一的 AI Agent 沟通,然后由它来调取各个产物的才智来为我们供应服务。

2)对话式交互的场景

使命式安排——高效

专业化的应用/工具。针对具体的业务领域、使命类型提出需求。输出一般具有边界、比较集中。产物的目的是尽快达成用户的目标。

闲聊式安排——有趣

娱乐型的应用/伙伴。用户没有明确的目标,跟随情绪变化。输出一般没有边界,可能包含任何主题。产物的目的是在对话过程中逐步满足用户的情感需求。

3)对话式交互的原则

供应引导,鼓励用户输出

如果开始对话之后迟迟没有输出,则供应猜测、默认选项、参考示例等,让用户直接点选、引导用户输出,避免用户在空无一物的前提下不知道如何开展对话。

特别是在闲聊式场景下,通过打招呼来引导、提示等让对话可持续。

懂得语境

在我们日常的对话中,很多信息是大家的「共识」,是彼此之间交流的信息基础,无需在对话中特意说明。

比如对话「Q:今天的天气怎么样?A:哪里的天气?」。这其中位置信息一般都是基于当前对话所在的位置或者上下文出现的位置信息来决定的,也就无需用户再次说明。

在 AI 的对话安排中,也就需求懂得这些语境信息,缩小信息输出的数量要求,提高沟通的效率。

记住上下文

上下文包括用户之前的操作、输出、用户的背景信息等,记住上下文并运用到之后的对话之中多轮对话的基础。一方面可以保证话题的连贯性,一方面也避免用户的重复输出。

具有包容性,消除歧义

语言表达会有不同的语气或者表达形式,语音识别也会有错误的情况,这时候要像谷歌搜索一样,给出合理的猜测并回答,缩小用户二次输出的成本。

当用户的输出有歧义时,实用多级置信度的形式给出最匹配的、最有可能的回答,并进一步询问且允许用户修改。

简洁、清晰、保证表达质量

简明扼要,陈述与话题相关的信息,避免模糊晦涩的表达。不管以何种形式来反馈,陈述的都是有效的事物,而不是无意义的答案。比如这样的对话「Q:你知道有哪些人获得了 2023 年诺贝尔奖吗?A:知道。」就毫无意义。

合适的信息量,采用多种信息输出模式

不多不少,恰到好处的信息含量。面对一个问题,网络上相关的信息可能千千万。需求连系实际产物、场景、用户属性等实际情况,给出合理、有效的回答。

我们大脑能处理的信息量是有限的,一旦超出,就会对短期记忆造成负担。在某些场景下,语音可以提高效率。但是语音输出的一个弊端是:听清并懂得语音中的信息,需求耗费我们大脑的资源,而且语音播放之后就消失了,也加重了用户的记忆负担。

所以不能只依赖于语音的输出形式,也不仅仅依赖于当前的输出渠道。采用视频、图片、声音等多种形态的输出形式甚至跨终端的输出渠道(比如某些场景在手表输出在手机、电视显示反馈结果等),可以极大地丰富我们反馈的多样性、提高信息传达的效率,避免用户需求在不同端之间来回处理信息。

照顾人类情绪,保持礼貌,具备服从指令的属性

比如这样的对话「Q:可以朗诵一首唐诗吗?A:不可以」会让人觉得别扭、受挫。

如果无法做到,也应该表达歉意并且说明愿意来安慰用户。比如「A:不好意思,当前网络状态不可用,请检查网络设置后再次尝试吧」

话轮转换

对话是一种相互合作,必须有来有回,实用的对话让对话双方知道该谁说话。

设定用户的期望,让用户知道什么时候可以轮换到自己、输出是否生效等。方法包括隐性确认(在回答时带上用户供应的信息)、非语言确认(运用灯光、图像、震动、提示音等举行反馈)等。

4)VUI/LUI

VUI,Voice User Interface,语音用户交互界面。LUI,Language User Interface,语言用户交互界面。是基于语音/语言作为输出与输出的交互形式。

严格来说,VUI/LUI 是对话式交互形态之一。因为对话式交互的核心在于一来一回的对话,输出输出的可能并不只有语音、文字,可以容纳更多的内容形式。

深度硬核干货!人工智能对用户体验安排的影响分析

对话式交互

优点

自然流畅、进修成本足够低。因为对话是从我们出生开始就伴随我们的交流形式,对话式的交互和人与人之间的沟通相似,无需教学就会运用。
从输出效率的角度而言,语音输出比键盘打字的速度更快。
解放双手,在双手被占用的情况下,可以拓展交互的渠道。
语音中包含语气、语调、语速等情绪性信息,如果能够识别这些附属的信息,也就拓宽了信息接收的渠道。
缩小对于导航的依赖,缩小用户的记忆负担、认知负担

缺点

视觉通道和听觉通道的信息融合要优于单独的视觉通道和听觉通道。对于多步骤、多字段的操作,如果完全依赖于对话式交互,所需的对话次数将会过多,影响整个动作的效率。这时候就需求用户意图预测、沿用典型模板、连系其他通道(屏幕点击、手势、实体按钮、位置等)操作等形式来简化所需的信息量或者多通道融合获取信息。
容易受到周围噪音的干扰。
隐私问题,在公共场合运用语音输出容易泄露隐私或者影响到其他人。
公共场合之下对着手机说话,有可能会引发社会耻辱感。所以,新的类型的产物往往需求通过明星效应、营销来形成一种风尚,引导人们运用。

③ NUI

NUI 充分利用我们生活在这个世界中获得的技能,最大限度地缩小认知负担,从而最大限度地缩小对于注意力的分散。(NUIs exploit skills that we have acquired through a lifetime of living in the world, which minimizes the cognitive load and therefore minimizes the distraction.)——Bill Buxton, a principal researcher at Microsoft

自然用户界面(Natural user interface,NUI)。维基百科对于 NUI 的描述是人们以最自然的交流形式与呆板互动,运用 NUI 的计算机不需求键盘或鼠标。

相比于传统的 GUI 或者当下比较火热的 CUI,NUI 更强调「自然」,也就是以符合人类直觉的形式与计算机沟通。不局限于某一种交互形式,而是依据场景选择最合适的交互形式。比如在自己家里,运用语音与智能音箱交互。在图书馆,运用触控、手势与智能手表交互。

NUI 最大的核心是以人为中心,让用户可以运用生活中已经习得的技能、经验以及已有的心理模型来与计算机交互,极大地缩小进修成本。因为人与外界的自然交流本身是多通道的,包含视觉、听觉、触觉、嗅觉、味觉,也就决定了 NUI 注定是多模态的。

1)不完全依赖于语音

因为声音稍纵即逝、难以回溯。完全依赖于语音输出与输出的交互形式需求占用用户大量的注意力,而我们的注意力往往有限,长时间的注意力集中非常消耗人的精力,从而降低了交互的准确性、影响交互的效率。同时长时间占用用户的主要注意力,也让用户无法同时做其他的事情。

对话式交互主要改变的是输出形式与运用路径,与现有丰富的、多模态的反馈形式连系,可以有效提升人机交互的效率。除听觉反馈以外,输出形式可以是视觉(指示灯、图片、视频等)、触觉(震动、温度变化等)。

随着 AI 在语音识别、语义懂得等方面才智的进步,自然对话的形式已成为 AI 产物的主流交互形式。就目前的情况而言,AI 还难以捕捉并解读我们的面部表情、姿势、眼神等这些非语言、情绪化、视觉化的信息。

相信未来,随着各种传感器、算法模型的不断演进,在我们与呆板对话时,它不仅能听懂我们的话语,也能连系我们的面部表情、姿势、手势、眼神等综合分析。至少在输出端,让人与呆板的交互逐渐靠近人与人的交互。有可能就像图灵所预测的,我们难以分辨和我们对话的到底是一个人还是一台呆板。

2)VUI+GUI

未来的人工智能系统很可能会拥有混合用户界面,连系了基于意图和基于命令的界面元素,同时保留许多图形用户界面元素。——Jakob Nielsen

凡事皆具两面性。不同交互形式的目的都是为了缩小用户的认知负担、操作负担、记忆负担,不是为了用个用。连系用户、场景、设备等特点,选用不同的交互形式连系,最大化地方便用户才是最优解。

3)多模态交互

多通道融合交互/多模态交互,包括语音、面部表情、手势、各类传感器所检测到的生理信息等都可以作为输出通道,既可以是用户主动发起的,也可以是产物主动获取的。输出则可以连系视觉、听觉、触觉、味觉和嗅觉多种模态。核心是围绕情境选择合适的交互模式,目标是自然、高效。

优势:

多模态融合不仅是为了符合用户自然的操作习惯,也可以增加信息的处理效率。就像在听演讲时,如果演讲者连系 PPT 举行图示化说明,就更容易、更快速地让人懂得。
多模态交互充分调动人的五感,连系 AR、VR、MR 等技术,将数字世界与物理世界有机连系,可以供应更好的真实感、临场感、沉浸感。
缩小对于个人才智的要求,让老人、残疾人等特殊群体也可以轻松、便捷地运用,践行通用安排的原则,促进社会的和谐。

4)基于意图的结果规范化(Intent-Based Outcome Specification )

这是雅各布·尼尔森提出的一种新的交互范式,详见: https://www.nngroup.com/articles/ai-paradigm/

以前是安排产物的能供性(Affordance)来引导用户操作,比如按钮代表可点击。现在是计算机要来懂得人的意符(Signifiers),比如抬起手臂,手机自动点亮屏幕,因为它猜测你可能需求开始运用手机。

NUI 侧重于交互形式的自然化,基于意图的结果规范化侧重于对于用户意图的反应。一个是形式,一个是目的,二者的核心都是让计算机围绕人来举行改变,缩小人们对认知负担、记忆负担、操作负担,提高人的效率,丰富人的生活。

3. 交互特征的变化

① 交互层级的压缩

功效架构更加扁平对应的就是交互层级的压缩。通过对话直接调起某个特定的功效,不需求在一层一层的功效结构中去寻找。每一个动作都是直达目的,缩小了很多寻找功效过程中的过渡操作。

② 界面的缩小

一方面,NUI 连系多种输出输出形式,不再单纯依赖于界面的呈现,语音、提示音、灯光、震动等多种形式的反馈会替换部分界面的反馈。另一方面,对话式的交互缩小了很多承载功效的页面如导航页、工作台等。

1)按钮的缩小

按钮是基于界面存在的,目的在于触发一个动作。一方面,卡片等元素本身可以充当按钮。另一方面,NUI 带来的多模态交互,点击屏幕操作将会缩小,对按钮的需求也相应的缩小了。

③ 主动交互增加

产物不再只是被动的接受信息,而是可以通过多模态感知主动获取信息,并依据用户设定的目标、对于用户的了解举行自主计划并触发下一步的动作,不再需求每一个使命都由用户来触发。比如汽车在检测到到用户远离车辆时自动锁车。智能音箱会在天气预报有雨时提醒用户出门记得带伞。

主动交互缩小了用户的操作负担,提高了人机协同的效率,也让产物显得更加贴心。

1)分析用户的意图

用户的举动数据、个人习惯与偏好等通过 AI Agent 这个统一的交互入口被全面、完整、准确地获取,连系 AI Agent 所记忆的上下文信息以及各种传感器所获取到的场景信息,对用户意图对分析将更加准确。也就是可以通过预测用户的下一步举动,主动提前帮助用户完成。有点相似于想要喝水的时候,杯子里总是有温度适宜的水。

4. AI 的“人设”

① 人设是什么

人设是指用户在与 AI 产物互动过程中,根据感知到的信息(虚拟形象、文本或者语音中的语气、语调、音色、情绪等)将 AI 对象人格化后所建立的一种对于 AI 的角色形象认知。比如,扫地呆板人在电量不足时,发出语音:“没能量啦,我要回去吃饭了。”在用户询问“你在哪里”时,回应“我在这里”。都可以让人感觉到它是一个有温度、有感情的个体而不是一个冰冷的呆板。这是一种心理上的简化举动,避免“恐怖谷”效应。

人设使得产物的个性更加鲜明、突出,用户与产物交互时能够获得“伙伴感”以及交流的愉悦感,有助于拉近产物与用户之间的心理距离。

② 人设设定的原则

1)一致性

角色的设定要与产物/内容的属性一致。比如法律、政治新闻等严肃性内容,就不适合运用呆萌、可爱的角色。

作为服务于人类的产物,在于用户对话时,应该保持前后一致、稳定的形象。如果前后的回答反差太大会让人觉得产物出错了。

2)有礼貌

同时要注意礼貌。比如要及时回答用户的问题,不能敷衍了事,不能指责用户。即便用户苛刻、生气,角色也应该体现出礼貌、谦逊、关怀。

3)情感性

感知到人类的情绪,并给出恰当的、体贴的回应。用户因此而与产物之间形成情感依恋,增强整体的运用体验。

4)幽默性

运用象征、讽喻、双关等手法,让人感受到愉悦、有趣,给予用户相似真实的社交体验。使 AI 的形象更加灵活、生动、富有人情味,而不再是冰冷的呆板。

5)个性化

针对不同的用户特征(年龄、职业等),也可以针对性地供应不同的角色设定。

③ 人设性格的体现形式

声音的音色、语速、节奏、表述的形式/语气、头像都能体现出 AI 的性格特征。

④ 人设性格的设定方法

与品牌/产物人设设定的方法相似,运用情绪板 moodboard,连系商业目标、产物目标来发散人设的关键词,比如客户希望以什么形容词来描述产物、用户喜欢什么样的人设。然后通过筛选、整合,选择最具有代表性的形容词,以可视化的形式呈现。然后与 Persona 相似,固化名字、职位、年龄、性别、举动习惯、爱好等特征。

人设设定好以后,所有的举动(语气、语速、表达形式等)、外观(表情、头像、虚拟形象等等)都围绕人设,从而强化这一形象在用户心中的印象。并在用户测试中优化迭代。

五、AI 才智加持后,产物安排应该注意的原则

目前比较系统的提出 AI 产物安排原则都有 MicroSoft、Google、SAP、IBM 几家公司(原文档见文后参考链接)。总体而言,安排原则中不变的是以人为本的核心,变化的是如何以人为本、如何更好地以人为本。

1. 明确传递系统可以做什么

做出说明、给出推荐等,帮助用户明白 AI 系统能够帮助自己解决何种问题。

供应框架与制约因素,引导用户迅速展开行动,避免用户在面对完全空白的页面时,脑海中思绪过多且无法集中,不知从何着手。

① 说明系统能做到多好

帮助用户了解 AI 系统犯错的频率,让用户对产物形成合适的预期。运用诸如「我们认为你可能会喜欢」来介绍推荐的音乐,会让人更能包容错误。

2. 基于具体场景和时间供应服务

根据用户当前的使命和环境判断何时该触发举动或中断举动。

比如检测到用户在行走过程中,手表自动记录步数。假设用户刚刚查询过去往目的地的路线,则自动进入步行导航模式。比如当时间为半夜时,语音助手在回答问题时主动降低音量。

① 记住前后文

记住用户最近的交互举动。保持短期记忆并允许用户高效引用。比如用户说:搜索「歌手李健」,在 AI 给出结果后,用户说:播放他的歌曲。这时候产物就应该播放李健的歌曲而不是再次询问用户播放谁的歌曲。

1)显示与上下文相关的信息

显示与用户当前使命和环境相关的信息。比如用户询问「天气情况」时,在结果中表明是今天、当前位置的天气情况。

② 记住关于用户的信息

记住用户的个人偏好、举动习惯等,主动推送/建议,缩小用户的重复操作。相似于登录之后的个性化推荐。

1)从用户的举动中进修

不断进修用户过往的操作来个性化用户体验,与用户建立更加亲密的联系。相似于推荐算法,推荐的是用户感兴趣、可能会用到的功效、信息。比如用户总是在每天的同一时刻打开同一个 APP,iPhone 会在用户下次这个时间点解锁手机时推荐这个 APP。

2)鼓励用户反馈

让用户能够在与人工智能系统的定期互动中供应反馈,表明自己的偏好。也就是产物不仅可以主动进修用户的举动,还可以让用户主动告诉产物自己喜欢什么、习惯什么。

③ 呆板主动感知

通过各类传感器实时感知周围环境、人的举动,以此更好地为人类服务。不需求用户主动发出指令,就可以连系以往的运用习惯举行意图判断,主动推送/发起流程。

1)平静技术

交流不是为了体现技术设备的才智,而是为了满足用户需求。——《交互的未来》

因为人们的注意力是有限的,是一种宝贵的资源。应该让人把注意力放在真正重要的事情上。如果各个产物一直大声的吆喝,不停地争夺用户的注意力,那么重要的事情有可能会被淹没。

在用户需求时,能够及时响应甚至提前预判,提高效率与流畅度。用户不需求时,不要过多的干扰用户,避免产物/技术本身引起太多的注意。相似于微信产物经理张小龙之前提出「用完即走」 的理念,产物是服务于人的,不能成为负担,而是要减轻人的负担。

3. 建立信任、不要让用户失去控制感

由于 AI 的不可解释性、自主计划,用户必然会对其有所顾虑。所以让用户建立起对于 AI 的信任感,是人类与 AI 深度协同的重要前提。

信任是有粘性的,如果用户信任一项服务,可能会选择一直信任。反之,如果用户不信任,可能会一直选择不信任。

信任对于用户是否会采用至关重要。不信任会蔓延,一个功效的不信任会影响对于整体或者所有相似产物的不信任。比如 Siri 就降低了人们对于所有手机语音助手的信任度。
人类对呆板的信任依赖于可靠性与安全性、可控性、清晰透明、一致性。

① 可靠性与安全性

要使 AI 系统受信任,它们需求可靠且安全。系统必须像安排好的那样运行,并安全响应新的情况。其固有的复原才智应能抵御预期操作或意外操作。

1)准确、及时

信任由积极的体验构成。频繁的犯错、延迟、不可用,让用户遭遇多次失败、挫折,会降低用户对产物的信心与信任。

与实际的人相比,人们对于呆板犯错的容忍度更低。

2)用户数据权利

供应通知和同意的机制,允许用户拒绝服务或数据。隐私设置和权限应该清晰、可查找且可调整。

充分披露个人信息的运用或共享形式。对数据的用途、运用范围供应详细的说明。

用户应始终控制正在运用的数据以及选择在什么情况下运用。他们可以拒绝 AI 访问他们认为可能会受到损害或不适合人工智能了解或运用的个人数据。

保护用户的隐私与数据安全。当个人详细信息(例如地址)可能作为人工智能预测的一部分而暴露时,采取额外措施来保护隐私(例如,匿名化姓名,即使人们同意运用他们的名字)。保护个人隐私,遵守呆板人三定律等。

② 可控性

1)由用户控制

AI 的底层原则是强化人的才智,而不是取代人。辅助用户计划,简化用户的负担。

从简单、独立的使命开始,让用户相信、适应 AI 的才智。同时,可以供应预测、建议,但是应该由用户来做最终的计划。如果产物计划完以后再通知用户,会让用户感觉失去主导权或者被产物所控制。

当用户提出的诉求有歧义时,给用户供应选项或者调整的机会来逐步明确目标。比如用户说想听「如愿」这首歌曲,搜索结果有好几个版本,这时候让用户选择一个,或者在播放开始时提示用户可以主动更换。

供应全局控制,允许用户全局自定义人工智能系统的监控内容和举动形式。

2)可以轻松的调用与关闭

在需求时能够易于启用。比如运用「Hi,Siri」来随时激活 iPhone 的语音助手。
出错时能轻松回退、编辑、改进或恢复。能够随时退出,相似于安全舱安排理念。

③ 清晰透明

1)真诚

标记 AI 生成的内容,让用户心里有数,保持诚信。

2)可解释性

清楚地说明系统为什么这样做。供应解释说明,让用户知晓 AI 做出计划的原因(一般是基于计划所带来的好处,当用户对底层技术感兴趣时,通过渐进式披露的形式来供应更多详细的信息)。或者如果发生错误,解释哪里出了问题。

由于 AI 对于普通用户来说就像一个黑盒,可解释性可帮助数据科学家、审核员和业务计划者确保 AI 系统能够证明其计划及其得出结论的形式,建立公众对颠覆性技术的信心,促进更安全的实践,并促进更广泛的社会采用。

可解释性还有助于确保符合公司政策、行业标准和政府法规。

3)通知用户

谨慎的更新和修改,添加或更新其功效时要通知用户。在更新和调整人工智能系统举动时,限制破坏性变化,让用户能够适应变化。

传达用户举动的后果,及时更新或传达用户举动将如何影响人工智能系统的未来举动。

4)一致性

一致性让 AI 的举动可预期,有助于用户建立心智模型,缩小因为 AI 才智黑盒带来的不可知,增加用户的掌控感。

4. 符合社会规范、缩小偏见

① 公平

错误的数据会带来错误的认知。如果 AI 预训练的数据中存在偏见,那么 AI 可能也会产生偏见。

建立伦理道德规范,缩小社会偏见。由于现实世界的数据中难免包含带有种族歧视等社会偏见的意向,需确保人工智能系统的语言和举动不会强化不良和不公平的成见和偏见,特别是那些与种族、民族、性别、国籍、收入、性取向、才智以及政治或宗教信仰等敏感特征相关的偏见。

② 国际化/在地化

根据用户的社会和文化背景,确保以用户期望的形式供应体验。国际化的产物要尊重当地的文化、风俗习惯、宗教信仰等。

5. 拟人化

社会语言学家的研究表明即使是极少的语音样本,也会让人产生对于演讲者性格、形象方面的印象。我们早已进化成可以根据人的声音来总结评判别人的专家。——《谷歌是怎么安排AI语音界面的?这里总结了对话安排六大原则》

人与 AI 的对话式交互,就像人与人之间的交流一样。用户能够这种拟人化的对话中获得“伙伴感”以及交流的愉悦感,拉近了人工智能与用户的心理距离,大大降低了用户运用人工智能的心理抗拒程度,从而形成品牌或产物和顾客间的情感纽带,强化用户与该品牌之间的关系。

六、AI 产物发展过程分析

才智的发展会推动产物形态的变革,就像是通信网络、智能手机催生出了无数的 APP,让微信视频聊天、实时看直播成为可能一样。AI 才智的发展也会拓宽 AI 产物的边界、丰富 AI 产物的形态。

1. 从才智发展看

人工智能的主要发展方向:运算智能、感知智能、认知智能。

计算智能:计算智能是人工智能发展的最初阶段,主要是指呆板对信息举行存储和计算的才智。在这个阶段,呆板主要举行简单的数据处理和计算使命,缺乏更深层次的懂得和进修才智。这部分主要是模型计算才智的提升。

感知智能:感知智能是人工智能发展的第二阶段,指呆板具备感知世界的才智,包括视觉、听觉、触觉等感知形式。这让呆板能够更好地懂得周围环境和与之举行交互,但仍缺乏深层次的思考和推理才智。这部分主要是多模态感知才智的提升。

认知智能:认知智能是人工智能发展的最高阶段,指呆板具备相似人类的认知才智,包括进修、推理、记忆和懂得等方面。在这个阶段,呆板可以自主地举行进修和思考,具有更高级的智能表现。这部分主要是模型能够自主进修、调整、优化。

2. 从产物角度看

①  一个趁手的工具

利用 AI 的运算智能、感知智能,在使命全流程的某一个使命中引入 AI 才智,解决各类业务场景中出现的问题。或者根据不同领域、职业等特定场景,打造垂直领域的 AI 而不是通用型的解决方案。比如运用人脸识别技术分析学生上直播课的表情,判断学生的进修状态,及时提醒老师关注,促进学生高效进修。

人智连系,使命还是由人来主导,AI 作为像锤子一样的工具,主要是执行指令,成为用户的助手,提高操作效率,帮助用户节省时间。比如内容创作平台的编辑器,可以让作者利用 AI 助手优化文章表达,但是没法从头到尾写一篇符合用户高要求的文章。

深度硬核干货!人工智能对用户体验安排的影响分析

图片来源:unsplash

② 成为现代“电力”

通过软硬连系的形式,连接起各个产物,产物之间借助各自的 AI Agent 互相沟通,形成统一的生态。这样的话,AI 就在我们的生活环境中无处不在,渗透到每一个角落,集成各类举动数据举行分析,供应综合、全面、贴心的服务。比如最常见的智能家居场景,门锁通过人脸识别为主人开门,同时把客厅的灯打开。用户坐到沙发上之后,用语音控制打开电视,客厅的灯光则自动调整到适合看电视的模式。

深度硬核干货!人工智能对用户体验安排的影响分析

图片来源:unsplash

③ 一个管家/私人助理

认知智能让 AI 学会自主预判、创造、计划,接管人类生活的琐碎事情。打造个人专属的 AI,借助信息通信,从用户相关的每一个产物中获取信息,综合分析,帮助用户做出计划。这个 AI 助理熟悉用户方方面面的习惯,通过用户的举动分析主动去对接各个产物、才智,从而实现完全的个性化。

比如一个独居老人,手环、心脏监测装置等检测到用户可能会身体不适,提前通过智能音箱、手机等提示用户去往医院检查。用户乘坐自动驾驶等汽车到达医院后,AI 助理已经帮助用户挂号,并将过往的数据发给医院的 AI 医生。医护人员根据 AI 医生的建议,直接安排检查、治疗方案。老人出院后,AI 医生将医嘱传送给老人的 AI 助理,由它来提醒老人每天按时吃药。

深度硬核干货!人工智能对用户体验安排的影响分析

图片来源:unsplash

七、AI 与现有产物的融合模式分析

从与现有产物的连系程度而言,大致应该是 AI 部分介入作为辅助——AI主导功效——完全AI化。

1. 从融合程度看

① 单点嵌入

在局部增加 AI 才智,比如嵌入到某一个按钮中、在原界面增加一个小入口、在评论区/聊天窗口运用 AT 等形式呼出 AI 助理。这样可以在保持原有用户习惯的基础上逐步培养用户的习惯。

需求对场景举行细致地分析,也就是应该在什么场景下提示用户产物所具有的 AI 才智。比如文档类产物,可以自动生成文章大纲。或者在用户选择一段文字后,编辑菜单中会出现「AI 改写」的入口。

深度硬核干货!人工智能对用户体验安排的影响分析

单点嵌入

② 模块嵌入

划分出专门的一块功效区,比如页面增加一个 tab、或者做一个独立的模块、或者下拉后进入 AI 对话模式。这样的好处是加入 AI 后,对原有的页面影响不大,同时又会比较醒目,让用户快速感知。

比如 FigJam AI,通过一个悬浮框来引导用户运用。

深度硬核干货!人工智能对用户体验安排的影响分析

Figma 界面截图

③ 半独立

这种是比较常见的一种形式,好处是不破坏原来的信息结构与页面布局,可以更快地融入 AI 才智。比如悬浮操作球作为入口、浏览器插件等。

深度硬核干货!人工智能对用户体验安排的影响分析

④ 完全独立

把 AI 才智打包,作为一个统一入口,可以辅助/调用所有产物,就像是嵌入 AI Agent 的 PC 或者手机一样。

这样 AI 就不是为了增强某一个产物的才智,而是本身成为一个才智平台/私人助理,相似于 Siri,可以调用 iPhone 内的各种应用。

2. 从连系形式看

以下模式只是基于现有状况对未来发展方向的一种合理推测与猜想。

① 软硬连系

1)才智平台

在电脑/手机中嵌入 AI Agent,就像手机的语音助手一样,综合多模态交互,直接调起设备中的各项才智举行响应。连系个人举动数据后,不但在对指令的回应方面愈发契合用户的喜好与习惯,还可以主动交互,提高生产效率。

比如用户想要看开心麻花的电影,那么 Agent 会整合各个应用资源供用户选择,或者依据用户的习惯直接播放用户可能感兴趣的那一部。

比如在用户看论文时,默默帮助用户总结、整理、收集、分类,用户看完几十篇论文后,不仅可以帮助用户横向对比、提取核心观点,还可以帮助用户发现相似的论文。用户在写作中引用某一原文时,对应生成参考文献注释。

2)硬件协同

AI 来协调指挥硬件,让信息在各个产物/设备之间流动,按照具体场景实现设备之间关联的贯通,促进各个设备之间的高效合作。

比如家庭助理,协调家中的各种电器,在下班到家之前调好空调温度、到家后继续通过智能音箱播放在车上收听的节目、音乐等。假设用户订好了第二天早上的机票,那家庭助理会在用户回到家后提醒用户收拾行李并且定好第二天早上的闹钟。

对于独居老人而言,可穿戴设备会实时监控老人的身体状况并提醒老人按时服药。在老人发生危险情况时及时拨打急救中心电话并为医护人员开门。

② 物理世界与数字世界的融合

连系各类传感器,AI 可以更全面的收集关于物理世界的各类信息。同时,利用 XR(VR, AR, MR)、具身智能(Embodied Artificial Intelligence)等技术等发展,数字世界也可以直接影响、操纵物理世界。

物理世界的信息、举动将可以通过数字世界举行传输,也许未来不仅可以视频通话看到对方的样子,还可以远程握手、拥抱等,人与人之间通过网络的聊天就像是面对面聊天一样。

③ 数字孪生

数字映射(Digital twin),或译作数字孪生、数字分身、数位双生,指在信息化平台内模拟物理实体、流程或者系统,相似实体系统在信息化平台中的双胞胎。比如在医疗领域,通过把患者投射成具有生命功效的数字孪生体,就可以让 AI 来模拟患者对于各种药物的反应,从而为患者选择最好的治疗方案。

在科幻电视《黑镜》中,技术人员通过抽取用户的思维,在数字世界制造一个用户的分身来作为用户的私人助理。因为只有自己才最了解自己。

深度硬核干货!人工智能对用户体验安排的影响分析

电视剧《黑镜》剧照

八、我们该怎么做

1. AI 只是手段,关键在于目的

AI 可以执行「做」这个过程,它知道要做什么,但是它不知道为什么要这么做。产物的目的、所需求服务的人群、所产生的价值都是由人来定义的。这些是将所有资源整合起来的核心。不然,只是通过 AI 生成一堆没有关联的内容,并不能转化为实际的产物或者服务。

AI 可以解决重复性、规则性的工作,但是无法共情人类的情感、懂得人类情绪、主动创造、做出计划。所以需求人类与 AI 携手合作,充分发挥各自的优势,

① 连系 AI 才智,帮助项目落地

在产物研发流程中,需求根据不同的业务需求和场景选择适合的 AI 技术,灵活运用 AI 的才智,将 AI 技术融入工作流。

比如目前 AI 生成的内容,就像是一个一个单独的元件,往往不能拿来直接运用,需求连系业务目的、场景等举行调整、连系等,达成业务目标。就像现在各种安排组件库,也需求连系实际的业务场景、需求解决的问题等灵活选用。

2. 提升综合才智,成为雪花形人才

雪花型人才是指多元、复合型人才,围绕一个核心,在多个领域快速积累知识和经验。知识之间的交叉、经验的迁移、不同行业之间的借鉴等,有助于快速地给出解决方案、做出计划。

由于 AI 可以解决很多基础性、重复性的工作,拓展个人的才智边界,提升个人产出的效率。那么人有限的精力可以用来做更多重要的事情,个人的才智将得到更全面的发展。也就是把以前用来练习与掌握各种软件、工具的时间都用于去懂得不同领域的知识,并连系这些知识指导、运用 AI 举行创作与输出。

深度硬核干货!人工智能对用户体验安排的影响分析

雪花型人才

① 未来已来,只是分布得不均匀

技术要找到合适的场景,解决问题,适配人性。就像《梁宁-产物思维 30 讲》中所说的:未来已来,只是分布得不均匀。面对问题时,我们可以将多领域知识、经验、技术、逻辑等迁移互鉴,拓宽自己的视野,通过类比、联想获得更优的解决方案。

这需求跨领域的进修才智,或者说快速熟悉某一个领域的才智,以及系统性思维。利用 AI 的快速总结才智,秉持终身进修的理念,将知识横向连接,最终成为一个具有自己独特见解的问题解决者。

② 提升软实力

1)对于世界的好奇心

好奇心引领人类前行。AI 是解决问题的工具,而人类则通过提出问题来拓展知识疆域的边界。爱因斯坦曾说:“提出一个问题往往比解决一个问题更为重要。”提出一个好问题,往往意味着对事物有着浓厚的兴趣、深入的思考、敏锐的洞察。在科学研究中,一个具有创新性和前瞻性的问题可能会引发一系列的研究和探索,从而推动整个领域的发展。

好奇心是自驱的动力。对未知充满好奇,可以提升我们的自我批判才智,助力于我们探索新的未知的领域、拓宽我们的思维边界,而不是仅仅满足于当前已有的模式。

2)保持人性

AI 主要是根据已有的数据、信息举行分析或预测,而人类的想象力、直觉、情感等可以帮助人类“无中生有”,创造那些不曾存在过的新事物。

信息不发生串联、关联、形成网络,则只是数据,而不能称之为知识。AI 可以帮我们快速、准确地找到各类信息与资源,但是让这些信息转变为个人的知识与智慧,还需求人类自我的认知、分析、整合、思考的努力后形成自己的观点与懂得。

同时,我们能够运用批判性思维来质疑和验证所接收到的信息,保持自我的独立性,从而避免盲目接受。

3)沟通才智

所有产物终究都是要为人所服务的,与人沟通、了解人的需求、确定我们要解决的问题,是确立产物目标的关键。而产物目标是决定我们要做什么、以及怎么做的指导原则,是整个产物的方向与旗帜。只有产物目标明确,产物才有可能获得成功。

人与 AI 相比的一大优势是具有同理心,能够懂得人类的情绪、情感,这在与人沟通中发挥着关键作用,可以设身处地为他人着想,懂得他们的感受和观点,从而分析与懂得他们没有直接表达出来的某些想法。

在沟通中建立信任、巩固情感、平衡各方利益,与上下游合作推进方案落地,是除了产出安排方案以外更加重要的才智。

4)对于业务的懂得

只有深入懂得业务,才能真正知晓用户在业务流程中的痛点和期望,从而安排出能切实解决问题、提升用户体验的产物。

很多 B 端产物,特别是金融类、法律合规类的产物,由于现实情况、规则制定多样化的原因,往往有很多复杂业务场景限制,这些规则由人制定而且互相牵扯,AI 可能需求大量的训练数据和时间来进修和适应。

同时,评估这些规则对于产物的影响,也需求多维度的梳理,并针对性的解决,确保产物的合规性和稳定性。

3. 在目前的产物研发流程中,如何运用 AI 提效?

就目前的阶段而言,人工智能更像是一个趁手、高效的工具。所以我们运用 AI 提效的总体原则是:在产物研发流程的不同阶段,选取有价值的环节、AI 比较擅长的部分,利用 AI 来强化才智、提高效率。

比如可以运用 AI 提高我们的搜索效率、助力我们快速获取各类资源,或者辅助我们举行一些发散、总结、提炼等方面基础性的思维创造工作,从中获取一些安排灵感与方向。

或者运用 AI 为计划过程增加视角的多样性。基于 AI 所拥有的不同领域的背景知识,当我们向 AI 寻求建议时,等于有各种类型的专业人士意见可供参考。

① 产物规划

描述产物的目的、场景、用户等,由 AI 给出一定的产物安排思路参考,包括对于产物业务流程的优化、模块分类、页面布局等。

② 信息架构

在组织信息时,可以让 AI 扮演不同的角色,如用户、管理员等,供应相似卡片分类测试的结果以供参考。

③ 供应灵感

在安排的双钻模型中,当具体需求解决的问题明确以后,一般需求举行创意探索与方案发散。这时候可以利用 AI 所掌握的海量数据与远超人类的计算才智,快速尝试各种风格举行对比,探索各种类型的风格感觉。对于视觉要求度高的运营安排而言,能够极大程度地缩减前期风格探索所需的时间。

④ 寻找&生成各类资源

增强搜索才智,举行资源整合或者生成一些符合业务场景的资源。包括不限于竞品、分析报告、情绪版、安排组件库、产物相关知识(业务、心理学、安排等)、行业数据、展示模板样机、插画、宣传海报等。

1)生成安排元素

运用 Midjourney 等 AI 图像生成工具,生成如 icon、logo、头像、虚拟人物、背景、banner、运营活动宣传插图等视觉元素。比如 QQ 音乐的不同播放器风格,就是 AI 生成的。

2)AIGC 丰富产物

产物中的一些内容资源,也可以加入 AIGC 内容。例如电商应用中的模特图片、数字人虚拟主播、可以发表话题的虚拟用户、可以在群聊/评论区随时出现的 AI 助理等。这样,可以使平台内容更加丰富、多样化,以吸引更多的用户参与和交流。

⑤ 优化文案

对文案表达举行润色、优化表达形式、检查错别字等,包括不限于内容示例、说明引导文案、反馈提示文案、产物的简介、销售文案、各平台的运营文案、Slogan 等。

⑥ 提炼重点、分析数据、撰写材料

把资料整理、数据处理这一类重复性的工作交给 AI。比如安排调研后,由 AI 来产出数据分析报告并总结、产物汇报阶段用 AI 先拟定一个初步的 PPT 大纲、在用户测试阶段用 AI 帮助制定测试计划、在宣传策划阶段让 AI 撰写视频脚本等。然后安排师再连系 AI 初步整理的材料举行细化与完善。

⑦ 供应计划依据

安排方案完成后,需求对不同的方案举行比对、测试、验证等。传统的用户测试常需求花费大量的人力、时间、金钱成本。运用 AI 举行初步的分析总结,选择一种方案上线并在后续迭代中不断优化,也许是另一种轻量化的解决思路。

最后

世界上唯一不变的是变化,我们唯一能做的就是拥抱它。

技术是产物实现的重要基础,技术的变革会导致产物的形态发生改变。因而所有行业都有可能被 AI 改造一遍,包括不限于:生产制造、教育、法律、影视传媒、游戏、医疗等等。这些改变将是业务层面的变革。

人性是产物需求的重要基础,人性不变,需求则不变,改变的只是实现需求的形式。技术的发展应该服务于人类的利益,无论技术如何演进,归根结底仍需以人本为核心,而不是仅仅追求技术本身的进步。也就是产物以技术作为实现手段,围绕着提高人类生活质量、实现人类终极自由的目标而前进。

给TA打赏
共{{data.count}}人
人已打赏
应用

原作者带队,LSTM卷土重来之Vision-LSTM出世

2024-6-9 0:51:00

应用

深度解析!Midjourney 三大常用参数 --s/c/w 的区别与使用技巧

2024-6-11 0:07:30

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
今日签到
搜索