Meta 推出 Llama 3.2 1B / 3B 模型量化版:功耗更低、可适用更多轻量移动设备

继今年 9 月开源 Llama 3.2 的 1B 与 3B 模型之后,Meta 于 10 月 24 日发布了这两个模型的量化版本,量化后的模型大小平均减少了 56%,RAM 使用量平均减少了 41%,模型速度提高了 2 至 4 倍,同时降低了功耗,使这些模型能够部署到更多移动设备上。 AI在线注:模型量化(Model Quantization)就是通过各种训练方式将浮点模型转为定点模型,可以压缩模型参数,降低模型的复杂性,以便于在更轻量的平台运行。 Meta 表示,他们采用了量化感知训练(Quantization-Aware Training,QAT)和后训练量化(SpinQuant)两种方法对模型进行量化,其中“量化感知训练”更重视模型的准确性,而“后训练量化”更强调模型的可移植性。

继今年 9 月开源 Llama 3.2 的 1B 与 3B 模型之后,Meta 于 10 月 24 日发布了这两个模型的量化版本,量化后的模型大小平均减少了 56%,RAM 使用量平均减少了 41%,模型速度提高了 2 至 4 倍,同时降低了功耗,使这些模型能够部署到更多移动设备上。

AI在线注:模型量化(Model Quantization)就是通过各种训练方式将浮点模型转为定点模型,可以压缩模型参数,降低模型的复杂性,以便于在更轻量的平台运行。

Meta 推出 Llama 3.2 1B / 3B 模型量化版:功耗更低、可适用更多轻量移动设备

Meta 表示,他们采用了量化感知训练(Quantization-Aware Training,QAT)和后训练量化(SpinQuant)两种方法对模型进行量化,其中“量化感知训练”更重视模型的准确性,而“后训练量化”更强调模型的可移植性

据介绍,研究人员一共为 Llama 3.2 的 1B 和 3B 模型各推出了两款量化版本,分别为 Llama 3.2 1B QLoRA、Llama 3.2 1B SpinQuant、Llama 3.2 3B QLoRA 和 Llama 3.2 3B SpinQuant。

Meta 声称,这些量化模型比非量化的 Llama BF16 模型速度更快,占用更少的 RAM,并且功耗更低,同时保持与 Llama BF16 版本几乎相同的精度。

尽管量化后的 Llama 3.2 1B 和 3B 模型仅支持 8000 个 Token 的上下文(原版模型支持 12.8 万个 Token),但 Meta 的测试发现,无论是 Llama QLoRA 还是 Llama SpinQuant 等量化版本的基准测试结果实际上与原来的 Llama BF16 版本相差不远。

Meta 推出 Llama 3.2 1B / 3B 模型量化版:功耗更低、可适用更多轻量移动设备

Meta 推出 Llama 3.2 1B / 3B 模型量化版:功耗更低、可适用更多轻量移动设备

Meta 推出 Llama 3.2 1B / 3B 模型量化版:功耗更低、可适用更多轻量移动设备

目前,Meta 已在一加 12、三星 S24+/S22 及苹果 iOS 设备(未公布具体型号)等移动平台测试这些经过量化后模型,测试“运行结果良好”,研究人员未来还计划通过神经处理单元(NPU)提升这些量化模型的性能。

相关资讯

真·ChatGPT平替:无需显卡,MacBook、树莓派就能运行LLaMA

Meta 在上个月末发布了一系列开源大模型 ——LLaMA(Large Language Model Meta AI),参数量从 70 亿到 650 亿不等。由于模型参数量较少,只需单张显卡即可运行,LLaMA 因此被称为 ChatGPT 的平替。发布以来,已有多位开发者尝试在自己的设备上运行 LLaMA 模型,并分享经验。

刚刚,Llama 3.2 来了!支持图像推理,还有可在手机上运行的版本

今天凌晨,大新闻不断。一边是 OpenAI 的高层又又又动荡了,另一边被誉为「真・Open AI」的 Meta 对 Llama 模型来了一波大更新:不仅推出了支持图像推理任务的新一代 Llama 11B 和 90B 模型,还发布了可在边缘和移动设备上的运行的轻量级模型 Llama 3.2 1B 和 3B。不仅如此,Meta 还正式发布了 Llama Stack Distribution,其可将多个 API 提供商打包在一起以便模型方便地调用各种工具或外部模型。此外,他们还发布了最新的安全保障措施。真・Open AI

解读阿里云PAI模型压缩技术落地实时移动端智能应用

随着移动端AI应用部署需求的日益增强,模型压缩作为深度学习模型实现轻量化部署的有效手段,在移动端场景越来越受关注。尤其是剪枝、量化、权重稀疏化与网络结构搜索等算法策略,能够帮助减少深度模型端侧部署时的资源消耗(Latency、Energy与Memory等),始终是学术界与工业界的发展焦点。阿里云机器学习PAI平台模型压缩技术,在端智能应用场景实现了端侧智能的快速赋能与应用落地。尤其在2020年阿里双十一期间,淘宝直播App的“一猜到底”语音交互游戏中,PAI模型压缩技术体现了关键作用。淘宝直播一猜到底背后的模型压缩